第1页(共21页)2015-2016学年河南省信阳市高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.命题“∀x∈R,3x>2x”的否定是()A.∀x∈R,3x≤2xB.∀x∉R,3x<2xC.∃x0∈R,3x0≤2x0D.∃x0∉R,3x0<2x02.用秦九韶算法求多项式f(x)=2x6﹣x2+2在x=2015时的值,需要进行乘法运算和加减法次数分别是()A.6,2B.5,3C.4,2D.8,23.“x≠1”是“x2+2x﹣3≠0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如果甲、乙在围棋比赛中,甲不输的概率为60%,甲获胜的概率为50%,则甲、乙和棋的概率为()A.50%B.40%C.20%D.10%5.已知双曲线﹣=1(a>0,b>0)的一条渐近线经过点(3,),则双曲线的离心率为()A.B.2C.或2D.或26.“辗转相除法”的算法思路如右图所示.记R(a\b)为a除以b所得的余数(a,b∈N*),执行程序框图,若输入a,b分别为243,45,则输出b的值为()A.0B.1C.9D.187.抛物线C:y2=4x的焦点为F,准线l与x轴交于点K,点A在C上,若△AFK的面积为4,则||=()A.6B.5C.4D.38.已知一组数据2(x1﹣1),2(x2﹣1),…,2(x2015﹣1)的平均数为6,标准差为4,则新数据x1,x2,…,x2015的平均数与标准差分别为()第2页(共21页)A.4,1B.3,2C.4,2D.3,19.运行下面程序,输出的结果是()A.47B.48C.102D.12310.在学校组织的“国学经典”朗诵比赛中,5位评委对甲、乙两名同学的评分如茎叶图所示(满分100分),若甲同学所得评分的众数为84,则甲同学所得评分的平均数不大于乙同学所得评分的平均数的概率为()A.B.C.D.11.如图所示正方体ABCD﹣A1B1C1D1,设M是底面正方形ABCD内的一个动点,且满足直线C1D与直线C1M所成的角等于30°,则以下说法正确的是()A.点M的轨迹是圆的一部分B.点M的轨迹是椭圆的一部分C.点M的轨迹是双曲线的一部分D.点M的轨迹是抛物线的一部分12.点B,F分别是椭圆+=1(a>b>0)的上顶点与左焦点,过F作x轴的垂线与椭圆交于第二象限的一点P,H(,0)(c为半焦距),若OP∥BH(O为坐标原点),则椭圆的离心率为()A.B.C.D.第3页(共21页)二、填空题:本大题共4个小题,每小题5分,共20分,把答案填在答题卡的相应位置13.先对112名学生随机地从1~112编号,用系统抽样方法抽取一个容量为16的样本,按编号平均分成16组(1~7,8~14,15~21,…,106~112),若第12组抽到的编号为82,则第4组中抽出的编号为.14.已知抛物线C:y2=8x的焦点F与双曲线E:﹣=1(a>0,b>0)的一个焦点重合,C的准线与E交于A,B,若||=6,则E的方程为.15.若八进制数等于二进制数,则a=,b=.16.在平面直角坐标系xOy中,从区域Ω:内随机抽取一点P,则P点到坐标原点的距离大于的概率为.三、解答题:本大题共5小题,满分60分,解答应写出文字说明,证明过程或演算步骤.17.命题p:对任意实数x,都有x2+2ax+a≥0恒成立;命题q:x﹣4y﹣a=0与抛物线x2=4y有交点,若“¬(p∨q)”为假命题,“p∧q”为假命题,求实数a的取值范围.18.登山运动是一项有益身心健康的活动,但它受山上气温的限制.某登山爱好者为了了解某山上气温y(℃)与相应山高x(km)之间的关系,随机统计了5次山上气温与相应山高,如下表:气温y(℃)18161042山高(km)2.633.44.24.8(1)根据上表数据,用最小二乘法求出y关于x的线性回归方程:=bx+;(2)若该名登山者携带物品足以应对山上﹣2.4℃的环境,试根据(1)中求出的线性回归方程预测,这名登山者最高可以攀登到多少千米处?(参考公式:=,=﹣)19.如图,在侧棱和底面垂直的三棱柱ABC﹣A1B1C1中,AB=1,AC=,BC=2,AA1=,点P为CC1的中点.(1)求证:A1C⊥平面ABP;(2)求平面ABP与平面A1B1P所成二面角的正弦值.20.某校为了调查学生身体生长发育情况,随机抽取200名学生测得它们的身高(单位:cm),并按照区间[155,160),[160,165),[165,170),[170,175),[175,180)分组,得到第4页(共21页)样本的频率分布直方图.由于操作不慎,区间[165,170),[170,175),[175,180)的频率分布直方图被破坏了,如图所示.已知频率分布直方图中[165,170),[170,175),[175,180)间的矩形的高依次成等差数列,并且身高在[170,175)内的人数是身高在[175,180)的人数的2倍.(1)求身高分别在区间[165,170),[170,175),[175,180)的人数,并将频率分布直方图补充完整;(2)用分层抽样的方法从身高在区间[155,160),[170,175),[175,180)中抽取7人,现在从这抽出的7人中再抽取2人进行问卷调查,求身高在区间[170,175)中至少有1人进行问卷调查的概率.21.已知点A(1,0),点P是圆F:(x+1)2+y2=20上一动点,线段AP的垂直平分线交FP于点M,记点M的轨迹为曲线C.(1)求曲线C的方程;(2)已知点B(0,),D(﹣4,0),若直线l:y=kx+与曲线C有两个不同的交点G和H,是否存在常数k,使得向量(+)⊥(O为坐标原点)?如果存在,求出k的值;如果不存在,请说明理由.请考生在22题、23题、24题三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑[选修4-1:几几何证明选讲]22.如图,四边形ABCD是⊙O的内接四边形,且AB∥CD,过点A作⊙O的切线,与CD,DB的延长线分别交于点P,Q.(1)证明:AD2=AB•DP;(2)若PD=3AB=3,BQ=,求弦CD的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的方程为+y2=1,以坐标原点为极点,x轴正半轴为极轴,并取相同的单位长度建立坐标系,曲线C2的极坐标方程为2ρ=sinθ.(1)写出曲线C1的参数方程,并求出C2的直角坐标方程;(2)若P,Q分别是曲线C1,C2上的动点,求||的取值范围.[选修4-5:不等式选讲]24.已知函数f(x)=2|x﹣1|﹣|x﹣a|,a>0.(1)当a=2时,求不等式f(x)≤1的解集;(2)若不等式f(x)≤5在区间[2,+∞)上有解,求a的取值范围.第5页(共21页)第6页(共21页)2015-2016学年河南省信阳市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.命题“∀x∈R,3x>2x”的否定是()A.∀x∈R,3x≤2xB.∀x∉R,3x<2xC.∃x0∈R,3x0≤2x0D.∃x0∉R,3x0<2x0【考点】命题的否定.【分析】利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题“∀x∈R,3x>2x”的否定是:∃x0∈R,3x0≤2x0.故选:C.2.用秦九韶算法求多项式f(x)=2x6﹣x2+2在x=2015时的值,需要进行乘法运算和加减法次数分别是()A.6,2B.5,3C.4,2D.8,2【考点】秦九韶算法.【分析】由秦九韶算法的原理,可以把多项式f(x)=2x6﹣x2+2变形计算出乘法与加法的运算次数.【解答】解:∵f(x)=(((((2x)x)x)x﹣1)x)x+2,∴乘法要运算6次,加减法要运算2次.故选:A.3.“x≠1”是“x2+2x﹣3≠0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】x2+2x﹣3≠0,解得x≠1,﹣3.即可判断出结论.【解答】解:x2+2x﹣3≠0,解得x≠1,﹣3.∴“x≠1”是“x2+2x﹣3≠0”的必要不充分条件.故选:B.4.如果甲、乙在围棋比赛中,甲不输的概率为60%,甲获胜的概率为50%,则甲、乙和棋的概率为()A.50%B.40%C.20%D.10%【考点】n次独立重复试验中恰好发生k次的概率.【分析】由条件利用互斥事件的概率加法公式,求得甲、乙和棋的概率.【解答】解:甲不输的概率,即甲获胜或甲与乙和棋的概率为60%,而甲获胜的概率为50%,故甲、乙和棋的概率为60%﹣50%=10%,第7页(共21页)故选:D.5.已知双曲线﹣=1(a>0,b>0)的一条渐近线经过点(3,),则双曲线的离心率为()A.B.2C.或2D.或2【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,推出ab关系,然后求解离心率.【解答】解:双曲线﹣=1(a>0,b>0)的一条渐近线经过点(3,),可得,即,可得,解得e=.故选:A.6.“辗转相除法”的算法思路如右图所示.记R(a\b)为a除以b所得的余数(a,b∈N*),执行程序框图,若输入a,b分别为243,45,则输出b的值为()A.0B.1C.9D.18【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b,y的值,当y=0时满足条件y=0,退出循环,输出b的值为9.【解答】解:模拟执行程序框图,可得a=243,b=45y=18,不满足条件y=0,a=45,b=18,y=9不满足条件y=0,a=18,b=9,y=0满足条件y=0,退出循环,输出b的值为9.故选:C.第8页(共21页)7.抛物线C:y2=4x的焦点为F,准线l与x轴交于点K,点A在C上,若△AFK的面积为4,则||=()A.6B.5C.4D.3【考点】抛物线的简单性质.【分析】可求出焦点F(1,0),准线l:x=﹣1,从而得到|KF|=2,这样根据△AFK的面积为4便可得到△AFK底边KF的高为4,从而得出点A的坐标为(4,4),根据两点间距离公式便可得出的值.【解答】解:如图,焦点F(1,0),准线l:x=﹣1;∴|KF|=2;∵S△AFK=4;∴△AFK底边KF上的高为4,即A点的纵坐标为4;∴A点的横坐标为4;∴A(4,4);∴.故选:B.8.已知一组数据2(x1﹣1),2(x2﹣1),…,2(x2015﹣1)的平均数为6,标准差为4,则新数据x1,x2,…,x2015的平均数与标准差分别为()A.4,1B.3,2C.4,2D.3,1【考点】众数、中位数、平均数;极差、方差与标准差.【分析】利用平均数和方差公式的计算公式求解.【解答】解:∵数据2(x1﹣1),2(x2﹣1),…,2(x2015﹣1)的平均数为6,设数据数据x1,x2,…,x2015的平均数为a,则2a﹣2=6,解得:a=4,∵数据2(x1﹣1),2(x2﹣1),…,2(x2015﹣1)的标准差是4,设数据数据x1,x2,…,x2015的标准差是b,则22b4=162,解得:b=2故选:C.9.运行下面程序,输出的结果是()第9页(共21页)A.47B.48C.102D.123【考点】伪代码.【分析】根据题意,模拟程序语言的运行过程,即可得出程序运行后输出的结果.【解答】解:模拟程序的运行过程,如下;A=2,B=1,A<18,A=2+1=3,B=3+1=4;A<18,A=3+4=7,B=7+4=11;A<18,A=7+11=18,B=18+11=29;A≥18,终止循环,输出C=18+29=47.故选:A.10.在学校组织的“国学经典”朗诵比赛中,5位评委对甲、乙两名同学的评分如茎叶图所示(满分100分),若甲同学所得评分的众数为84,则甲同学所得评分的平均数不大于乙