河海大学智能交通结课论文

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1数据分析与智能交通摘要:智能交通是解决城市交通拥堵,改善城市出行条件的重要途径。大数据时代的到来以及物联网、云计算。互联网等技术的发展给智能交通注入新的技术内涵,带来重大变革。随着城市的迅速发展,交通拥堵、交通污染日益严重,交通事故频繁发生,这些都是各大城市亟待解决的问题。智能交通成为改善城市交通的关键所在。为此,及时、准确获取交通数据并构建交通数据处理模型是建设智能交通的前提,而这一难题可以通过大数据技术得到解决。可以说当智能交通遇到大数据,如同二氧化锰在制取氧气中的催化剂一样,一场剧烈的化学反应加剧了两方的共同发展。本文将对智能交通建设建设中的大数据的应用以及价值体现做分析。关键字:大数据;智能交通;1.引言近年来,随着物联网、云计算、信息技术的发展推动了大数据新技术的迅速崛起,给智能交通系统的发展带来了更多的机遇和挑战。不仅需求智能交通系统的技术变革,而且对智能交通的设计理念和模式也有新的要求。2012年3月29日,奥巴马政府公布“大数据研发计划”,旨在改进现有人们从海量和复杂的数据中获取知识的能力,从而加速美国在科学与工程领域发明的步伐,增强国家安全,转变现有的教学和学习方式。我国亦于2012年7月22日在北京大学举行“首届中国大数据应用论坛”,主要议题包括大数据的发展趋势、不同场景的大数据应用、云计算与大数据、大数据与商业智能等,旨在共同讨论大数据的应用价值。2015年两会上,“大数据(bigdata)”一词首次写入政府工作报告。在交通领域,大数据一直被视作缓解交通压力的技术利器。应用大数据有助于了解城市交通拥堵问题中人的出行规律和原因,实现交通和生活的和谐,提高城市的宜居性,为政府精准管理提供基于数据证据的综合决策。同时,大数据的挖掘和使用还有利于催生信息消费新模式,促进信息消费产业发展。随着手机网络、全球定位系统/北斗车载导航、车联网、交通物联网的发展,交通要素的人、车、路等的信息都能够实时采集,城市交通大数据来源日益丰富。在日益成熟的物联网和云计算平台技术支持下,通过城市交通大数据的采集、传输、存储、挖掘和分析等,有望实现城市交通一体化,即在一个平台上实现交通行政监管、交通企业运营、交通市民服务的集成和优化。城市交通大数据的集成与分析技术研究,对我国智慧城市的发展具有战略性意义。交通大数据具有种类繁多、异质性、时空尺度跨越大、动态多变、高度随机性、局部性和有限生命周期等特征,如何有效地集成交通大数据,满足高时效性和知识牵引等城市交通智慧化需求,是各个大中城市所面临的前所未有的发展机遇和挑战22.大数据的发展状况及趋势近年来,数据的快速增长成了许多行业共同面对的严峻挑战和宝贵机遇,信息社会正在进入大数据时代。“大数据”(BigData)是继云计算、物联网之后IT产业又一次颠覆性的技术变革,对国家治理模式、对企业的决策、组织和业务流程、对个人生活方式都将产生巨大的影响。在信息技术中,大数据是一个数据集的集合,这个集合是如此大而复杂,以至于它很难通过现有数据库管理工具来进行处理从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。根据互联网数据中心(IDC)估测,数据一直以每年50%的速度增长(大数据摩尔定律),这意味着人类在最近两年产生的数据量相当于之前产生的全部数据量,预计到2020年,全球将总共拥有35亿GB(35ZB)的数据。大数据处理的数据规模从TB级上升到PB、EB甚至ZB级,人们面临着如何降低数据存储成本、充分利用计算资源、提高系统并发吞吐率、支持分布式非线性迭代算法优化等众多难题。为了应对大数据的发展趋势,更好地为行业用户和个人提供数据分析的服务,亟需构建各类不同的大数据平台,支持用户对数据的多种需求。构建大数据平台就是要将不同渠道、不同来源、不同结构的数据进行有机的整合。与传统数据平台不同的是,大数据海量的规模、多样的类型、快速的流动和动态的体系以及巨大的价值是大数据平台构建需要重点考虑的几个因素。除此之外,数据的分类存储、数据平台的开放性、数据的智能处理以及数据平台与用户的交互都为大数据平台的建设带来前所未有的挑战。“大数据”本身是一个现象而不仅仅是一种技术,这是信息科技历史发展的必然结果。大数据的采集、传输、处理和应用所需的相关大数据处理技术,是通过系列地使用非传统工具来对大量的结构化、半结构化和非结构化数据进行处理,从而获得分析和预测结果的一系列大数据处理技术。大数据技术的战略意义也不仅在于掌握庞大的数据信息,而更在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现等功能的有力武器。大数据发展呈现以下趋势:(1)基于云计算的数据分析平台云计算为大数据提供了可以弹性扩展、相对便宜的存储空间和计算资源,使得中小企业也可以像亚马逊公司一样通过云计算来完成大数据分析。云计算IT资源庞大、分布较为广泛,是异构系统较多的企业及时准确处理数据的有力方式,甚至是唯一的方式。大数据要走向云计算,还有赖于数据通信带宽的提高和云资源池的建设,需要确保原始数据能迁移到云计算环境以及资源池可以随需弹性扩展。(2)数据分析集逐步扩大,企业级数据仓库将成为主流当人们从大数据分析中尝到甜头以后,数据分析集就会逐步扩大。目前大部分的企业分析的数据量一般以TB为单位。按照目前数据的发展速度,数据量很快将会进入PB时代。特别是目前在100~500TB和500+TB范围的分析数据集的数量会成倍增长。随着数据分析集的扩大,以前部门层级的数据集将不能满足大数据分析的需求,它们将成为企业级数据库(EDW)的一个子集。因此,企业内的数据分析将从部门级过渡到企业级,从面向部门需求转向面向企业需求,从而也必将获得比部门视角更大的益处。随着政府和行业数据的开放,更多的外部数据将进入企业级数据仓库,使得数据仓库规模更大,数据的价值也更大。33.大数据技术与智能交通3.1智能交通需求与大数据契合智能交通整体框架主要包括物理感知层、软件应用平台及分析预测及优化管理的应用。其中物理感知层主要是对交通状况和交通数据的感知采集;软件应用平台是将各感知终端的信息进行整合、转换处理,以支撑分析预警与优化管理的应用系统建设;分析预测及优化管理应用主要包括交通规划、交通监控、智能诱导、智能停车等应用系统。系统利用先进的视频监控、智能识别和信息技术手段,增加可管理空间、时间和范围,不断提升管理广度、深度和精细度。整个系统由信息综合应用平台、信号控制系统、视频监控系统、智能卡口系统、电子警察系统、信息采集系统、信息发布系统等组成。以达到四方面的目标:提高通行能力、减少交通事故、打击违章事件、出行信息服务。如下是智能交通整体应用架构图:智能交通整体应用架构图整个系统建设的核心是数据的采集、存储与计算,而其中最重要的核心思想就是“数据是价值”。问题就是如何把数据转换成价值。这就成为一个技术问题。从统计学的角度,任何领域任何动态发展的事物,只要有足够多的样本数据,就一定能从样本数据中找到动态发展的规律。数据越多,准确率越高。这个“规律”就是数据的价值所在。对于商业机构,可以分析用户行为规律从而提高销售量;分析目标市场规律,定点投放广告从而降低成本等等;对于公安行业,可以分析区域性犯罪趋势,提前预防从而降低犯罪率;还可以分析交通行为规律,提前做交通疏导,提高交通通畅率,这就能真正挖掘数据的潜在价值,提高其社会价值。从20世纪初的网络发展以来,进入一个高度联网的阶段。联网的同时,数据高度集中,数据量急剧增加。据IDC报告现在互联网的数据,每两年就翻一番。这个增长率在智能交通4行业同样有效,随着卡口、电警、摄像机数量的增加,高清化、智能化的发展,如果再算上物联网的各种传感器,未来几年的数据量增加可能大大高于这个增长率。这就为智能交通行业实现大数据提供了数据基础。具体而言,智能交通与大数据契合可以冲三个角度来看待:首先,从应用成熟度看,今天无论卡口、电子警察还是视频监控都是对图像和视频数据进行语意化和结构化处理最成熟、最完整、应用深度最深的领域。智能交通可能是现在新兴技术和应用领域里率先突破数据应用瓶颈的一个技术领域。其次,从技术角度看,包括大数据、云计算的技术架构最先在智能交通里落地,智能交通也必将引领整个智慧城市各个子模块的技术潮流和走势。最后,从使用者与应用者关联的角度看,交通的智能化最终会影响到每一个人骑车、驾车、公交出行的感受。每一位市民都能够有非常好的交通秩序体验,这一点就需要智能交通的技术方案去支撑实现。3.2大数据:改变传统交通管理的路径社会经济的快速发展促使城市机动车辆的数量大幅增加。城镇化的加速打破了城市道路系统的均衡状态,传统的交通系统难以满足当前复杂的交通需求,交通堵塞成为棘手问题。用大数据技术可促进交通管理模式的变革。大数据技术的主要特点及其对传统交通的改变集中在以下方面:第一,大数据的虚拟性可以解决跨越行政区域的限制。行政区域的划分是国家为了有效统治和管理,而将一个国家划分不同行政区域。这个划分在促进各个行政区域自治的同时,也导致各个地方政府追求各自辖区利益的最大化,而对地方政府之间边界区的交通基础设施建设、过境交通线路等漠不关心。交通大数据的虚拟性,有利于其信息跨越区域管理,只要多方共同遵照相关的信息共享原则,就能在已有的行政区域下解决跨域管理问题[2]。第二,大数据具有信息集成优势和组合效率。我国大部分城市的各类交通运输管理主体分散在不同主管部门,呈现出条块分割的现象。涉及交通的“有关部门”超过10个,每个部门都有自己的信息化系统,但这些数据信息只存在于垂直业务和单一应用中,与邻近业务系统缺乏共通联动。这种分散造成交通管理的碎片化,如交通信息分散、信息内容单一等问题。大数据有助于建立综合性立体的交通信息体系,通过将不同范围、不同区域、不同领域的“数据仓库”加以综合,构建公共交通信息集成利用模式,发挥整体性交通功能,这样才能发现新价值,带来新机会。例如气象、交通、保险部门的数据结合起来,可高效率地研究交通领域防灾减灾;IC卡数据结合抽样调查,能更快捷、更精确测得城市交通流分布状况[5]。第三,大数据的智能性能较好的配置交通资源[4]。传统的交通管理主要依靠人工的方式进行规划和管理,难以实现交通的动态化管理。通过对大数据的分析处理,可以辅助交通管理制定出较好的统筹与协调解决方案。一方面减少各个交通部门运营的人力和物力,另一方面可有些提升道理交通资源的合理利用。如根据大数据结果确定多模式地面公交网络高效配置和客流组织方案,多层次地面公交主干网络绿波通行控制以及交通信号自适应控制。第四,大数据的快速性和可预测性能提升交通预测的水平。用传统的思维来改善交通拥堵,一般是加大基础设施投入,即加宽道路、增加道路里程来提高交通通行能力,但这种做法又不仅会受到土地资源的限制,而且规划的方案是否能满足远景需要也有待商榷。在对各个部门的数据进行准确提炼和构建合适的交通预测模型后,可以有效模拟交通未来运行状态,验证技术方案的可行性。而在实时交通预测领域,大数据的快速信息处理能力,对于车辆碰撞、车辆换道、驾驶员行为状态检测等实时预测也有非常高的可靠性。3.3大数据的处理与应用5(1)大数据采集在各城市建设智慧交通的过程中,将产生越来越多的视频监控、卡口电警、路况信息、管控信息、营运信息、GPS定位信息、RFID识别信息等数据,每天产生的数据量可以达到PB级别,并且呈现指数级增长。(2)大数据增值应用深入挖掘数据价值,在智能交通、公安实战等行业上推出车辆轨迹、道路流量、案件聚类等大数据模型。基于大数据模型,推出智能套牌、智能跟车分析、轨迹碰撞、人脸比对、舆情分析等数据增值应用,逐步解决行业的深层次问题。(3)海量数据计算通过云计算集群,实现对海量数据的分布式高速计算,支撑对海量数据的高效分析挖掘。云计算集群是一种M/S架构的分布式计算系统,Master作为调度管理服务器,

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功