如何学好高中数学作为刚刚迈入高一和进入高三阶段的学生来说,毫无疑问,学好数学考好高考是难以逾越的一道坎。为此有人说:“高中数学很难学,而且一年比一年难,每一年高考数学和英语都是拉分最大的学科,很多人偏科也是偏这两门,失败就在于此。”一、为什么初中数学学习的很好,而高中数学却困难重重?【原因一】高中数学与初中数学相比,难度提高。因此会有少部分新高一生一时无法适应。表现在上课都听懂,作业不会做;或即使做出来,老师批改后才知道有多处错误,这种现象被戏称为“一听就懂,一看就会,一做就错”。因此有些家长会认为孩子在初中数学考试都接近满分,怎么到了高中会考试不及格?!高中的数学语言与初中有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合符号语言、逻辑运算语言、函数语言、图形语言等。高一年级的学生一开始的思维梯度太大,以至集合、映射、函数等概念难以理解,觉得离生活很远,似乎很“玄”。高中数学思维方法与初中阶段大不相同。初中阶段,由于很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,确定了常见的思维套路。因此,形成初中生在数学学习中习惯于这种机械的,便于操作的定势方式。而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了更高的要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降是高一学生产生数学学习障碍的另一个原因。高中数学比初中数学的知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。这也使很多学习被动的、依赖心理重的高一新生感到不适应。应对方法:要透彻理解书本上和课堂上老师补充的内容,有时要反复思考、再三研究,要能在理解的基础上举一反三,并在勤学的基础上好问。【原因二】初、高中不同学习阶段对数学的不同要求所致。高中考试平均分一般要求在70分左右。如果一个班有50名学生,通常会有10个以下不及格,90分以上人数较少。有些同学和家长不了解这些情况,对初三时的成绩接近满分到高一开始时的不及格这个落差感到不可思议,重点中学的学生及其家长会特别有压力。应对方法:看学生的成绩不能仅看分数值,关键要看在班级或年级的相对位置,同时还要看学生所在学校在全市所处的位置,综合考虑就会心理平衡,不必要的负担也就随之而去。【原因三】学习方法的不适应。高中数学与初中相比,内容多、进度快、题目难,课堂听懂作业却常常磕磕绊绊,由于各科信息量都较大,如果不能有效地复习,前学后忘的现象比较严重。培养良好的学习方法和习惯,体会“死记硬背”与“活学活用”的区别。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课不能抓重点难点,不能体会思想方法,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,结果是事倍功半,收效甚微。应对方法:课堂上不仅要听懂,还要把老师补充的内容适当地记下来,课后最好把所学的内容消化后再做作业,不要一边做题一边看笔记或看公式。课后尽可能再选择一些相关问题来练习,以便做到触类旁通。【原因四】思想上有所放松。由于初三学习比较辛苦,到高一部分同学会有松口气的想法,因为离高考毕竟还有三年时间,尤其是初三靠拼命补课突击上来的部分同学,还指望“重温旧梦”,这是很危险的想法。如果高一基础太差,指望高三突击,实践表明多数同学会落空。部分智力较好的男生“恃才傲物”,解题只追求答案的正确性,书写不规范,考试时丢分严重。经过升中考后,高一年级的学生有的思想开始松懈,尤其在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中同学,甚至错误的认为高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。而高中数学的难度远非初中数学能比,需要三年的艰苦努力,加上高考的内容源于课本而高于课本,具有很强的选拨性,想等到高三临考时再发奋一、二个月,其缺漏的很多知识是非常难完成的。应对方法:高一的课程内容不得懈怠,函数知识贯穿于高中数学的始终,函数思想更是解决许多问题的利器,学好函数对整个高中数学都很重要,放松不得。在高一开始时养成勤奋、刻苦的学习态度,严谨、认真的学习习惯和方法非常重要。高中数学有十几章内容,高一数学主要是函数,有些同学函数学得不怎么好,但立体几何、解析几何却能学得不错,因此,一定要用变化的观点对待学生。鼓励和自信是永不失效的教育法宝。二、学习要求数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。三、几点注意:1、提高学生数学能力的过程是循序渐进的过程,要防止急躁心理,有的同学贪多求快,囫囵吞枣,有的同学想靠几天冲刺一蹴而就,有的取得一点成绩沾沾自喜,遇到挫折又一蹶不振,针对这些实际问题要有针对性的教学。2、知识的积累、能力的培养是长期的过程,正如华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。同时近几年高考试题中应用性问题的出现,更对学生把所学数学知识应用到实际生活中解决问题能力提出了更为严峻的挑战,应加强对应用数学意识和创造思维方法与能力的培养与训练。四、方法指导----数学学习的误区误区一:课上听懂知识就掌握了在数学学习过程中,常常出现这种现象,学生在课堂上听懂了,但课后解题特别是遇到新题型时便无所适从。这就说明上课听懂是一回事,而达到能应用知识解决问题是另一回事。波里亚说得好:“教师在课堂上讲什么当然重要,然而学生想什么更是千百倍的重要。”教师所举例题是范例也是思维训练的手段,作为学生不应该只学会题中的知识,更要学会领悟出解题思路与技巧,以及蕴藏其中的数学思想方法。对策一:自己重做一遍例题。对策二:问自己:为什么这样思考问题?对策三:条件、结论换一下行吗?对策四:有其他结论吗?对策五:我能得到什么解题规律?误区二:多做题目总能遇到考试题有这种想法的人总会感到失望。每一份综合试卷,出卷人总要避免考旧题、陈题,尽量从新的角度,新的层面上设计问题。但是考查的知识点和数学思想方法是恒久不变的。所以多做题,不会碰巧和考题零距离亲密接触,反而会把自己陷入无边无际的题海之中。解决问题的办法是从知识点和思想方法的角度分别对所解题目进行归类,总结解题经验的同时,确认自己是否真正掌握并确认复习的重点。对策一:让自己花点时间整理最近解题的题型与思路。对策二:这道题和以前的某一题差不多吗?对策三:此题的知识点我是否熟悉了?对策四:最近有哪几题的图形相近?能否归类?对策五:这一题的解题思想在以前题目中也用到了,让我把它们找出来!误区三钻研难题基础题就简单了有一个学生曾对我说:“我喜欢做难题,钻研数学难题能让我感到思维中的快乐,简单的题目没有什么意思。”应该说这位同学已经体会到了数学学习的快乐,他对数学开始有自己的理解,可是奇怪的是他的数学成绩总达不到满意的高分,考完试后他总是后悔有一些地方不细心或没注意。其实这也在一定程度上反映出我们数学学习中的浮躁状况,老师爱讲难题、综合题,学生想做综合题、难题,在忽视基础的同时,迷失了数学学习的方向。对策一:告诉自己数学思维不等于复杂思维,数学的美往往体现在一些小题目中。对策二:“简约而不简单”在平常题中体会数学思维的乐趣。对策三:“一滴朝露也能折射出太阳的光辉。”让我从基础题中找到综合题的影子。对策四:这道题真的简单吗?对策五:我是一名优秀的学生,我能在平凡中体现出我的优秀。误区四思想有点高不可攀一谈到数学思想方法,有些学生会认为深不可测、高不可攀。其实每一道数学题之中都包含着数学思想方法,例如把分式方程化为整式方程就应用了转化思想,列方程解应用题体现了方程思想,平面直角坐标系中图象与解析式反映了数形结合思想,图形的翻折与旋转则表现了运动变换思想等等。数学思想方法是指导解题的十分重要的方针,有利于培养学生思维的广阔性、深刻性、灵活性和组织性。在初三数学的学习过程中,自己不妨把图形动一动、变一变,把条件和结论作一些其它方面的联想,数学化地思考问题。中考题的压轴题往往是在串联几个知识点的同时考查学生猜想与探究、函数与运动、变换与分类等能力,这在能力层面上提出了较高的要求。对策一:数学思想方法并不神秘,它蕴藏在题目之中。对策二:了解一些数学思想,找到几道典型题。对策三:解题完毕问自己“我运用了什么数学思想方法”?对策四:解题前问自己从什么角度去思考?(方程角度、运动角度、函数角度、分类讨论角度等)对策五:请老师介绍一些数学思想方法。另外对于练习要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,要精选题目。不能采用题海战术。只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解题的形式、难度。要分析题目。解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。高一高二数学是高中学习一个艰苦的磨炼,经过了这个阶段的砺炼,就会打开高中数学的学习思维,前面的道路就会豁然开朗,只要同学们增强信心,再掌握正确的学习方法,付出的努力一定会有回报。(本文仅供参考)