波纹管膨胀节的设计与应用膨胀节也称补偿器,是一种弹性补偿装置,主要用来补偿管道或设备因温度影响而引起的热胀冷缩位移(有时也称热位移)。膨胀节的补偿元件是波纹管。在操作过程中,波纹管除产生位移(变形)外,往往还要承受一定的工作压力,因此,膨胀节也是一种承压的弹性补偿装置,所以,保证其安全可靠地工作是十分重要的。膨胀节除作为热位移补偿装置使用外,也常被用于隔振和降噪。膨胀节波纹管的波形较多,常用的有U形、Ω形、S形等,在这里,主要介绍U形波纹管膨胀节的设计与应用中的有关问题。1、膨胀节结构类型及其应用1.lU形波纹管膨胀节的结构类型U形波纹管膨胀节的结构类型较多,不同类型的膨胀节,适用的场合也各不相同。主要的类型有单式轴向型、单式和复式铰链型、复式自由型、复式拉杆型、直管和弯管压力平衡型等。各种类型的结构示意图见图l~图10。为提高膨胀节的承载能力,可设计带加强环或稳定环的膨胀节,其纳构示意如图11所示。(1)单式轴向型膨胀节由一个波纹管及结构件组成、主要用于吸收轴向位移而不能承受波纹管压力推力的膨胀节(见图1)。(2)单式铰链型膨胀节由一个波纹管及销轴、铰链板和立板等结构件组成、受波纹管压力推力的膨胀节(见图2)。(3)单式万向铰链型膨胀节由一个波纹管及销轴、铰链板、万向环和立板等结构组成、能在任一平而内角位移并能承受波纹管压力推力的膨胀节(见图3)。(4)复式自由型膨胀节由中间管所连接的两个波纹管(及控制杆或四连杆)等结构件组成、主要用于吸收轴向与横向组合位移而不能承受波纹管压力推力的膨胀节(见图4)。(5)复式技杆型膨胀节由中间管所连接的两个波纹管及拉杆和端板等结构件组成、能吸收任一方向横向位移并能承受波纹管压力推力的膨胀节,(见图5)。(6)复式铰链型膨胀节由中间管所连接的两个波纹管及销轴、铰链板和立板等结构件组成、只能吸收单方向横向位移并能承受波纹管压力推力的膨胀节(见图6)。(7)复式万向铰链型膨胀节由中间管所连接的两个波纹管及十字销轴、铰链板和立板等结构件组成、能吸收一方向横向位移并能承受波纹管压力推力的膨胀节(见图7)。(8)弯管压力平衡型膨胀节由一个或中间管所连接的两个工作波纹管和一个平衡波纹管及弯头或三通、封头、拉杆和端板等结构件组成、主要用于吸收轴向与横向组合位移并能承受波纹管压力推力的膨胀节(见图8)。(9)直管压力平衡型膨胀节由位于两端的两个工作波纹管和位于中间的一个平衡波纹管及拉杆和端板等结构件组成、主要用于吸收轴向位移并能承受波纹管压力推力的膨胀节(见图9)。(10)外压单式轴向型膨胀节由承受外压的波纹管及外管和端环等结构件组成、只用于吸收位移而不能承受波纹管压力推力的膨胀节(见图10)。1.2膨胀节的应用示例不同型式的膨胀节有不同位移补偿功能,在管路设计中,可以根据管路的结构及压力与通径等参数综合考虑给予选型。1.2.1轴向位移的补偿图12是采用单式膨胀节吸收管线轴向膨胀的一个良好的典型实例。图13是采用复式膨胀节吸收管线轴向膨胀的一个良好的典型实例。图14是采用膨胀节吸收带支管的管线的轴向膨胀的一个良好的典型实例。图15是采用膨胀节吸收具有异径管的管线的轴向膨胀的一个良好的典型实例。图16表示一个包含z形管段的管线上使用膨胀节的方法。图17是采用弯管压力平衡式膨胀节吸收管线轴向膨胀的一个良好的典型实例。图18表示如何采用直管压力平衡式膨胀节吸收长的直管段上的轴向位移。图19是采用弯管压力平衡式膨胀节吸收汽轮机、泵、压缩机等设备的热膨胀的一个良好的典型实例。膨胀节的主要作用是减小作用到设备壳体上的载荷。1.2.2对横向位移、角位移及其组合位移的补偿在具有横向位移、角位移及其组合位移的场合,正确选择和使用膨胀节需要考虑到管道的构形、运行条件、预期的循环寿命、管道和设备的承载能力、可用于支承的结构物等多种因素。在某些情况下,可能有几种膨胀节都适合同一项应用,这时可以单纯根据经济性来考虑选择哪一种。然而,更为常见的是在各种可行的设计之中,应考虑到这一种或那一种具有独到之处,特别适合在某些特定的场合下使用。(1)单式膨胀节图20、图21是采用单式膨胀节吸收轴向与横向组合位移的典型实例。图22,图23将图21中膨胀节两端的主固定支架改换为连杆。(2)万能式膨胀节万能式膨胀节特别适合吸收横向位移。此外,这种设计形式也可用于吸收轴向位移、角位移以及任意由这三种形式合成的位移。万能式膨胀节一般用法是将这种带连杆的膨胀节设置在呈90°的z型管道的中间管臂内,图24和图25是两个应用实例。图26是在存在轴向与横向组合位移的场合使用弯管压力平衡式膨胀节的典型实例。图27表示在管道转角不等丁90°时也可以使用弯管压力平衡式膨胀节。图28给出一种常见的非常适于使用弯管压力平衡式膨胀节的场合。图29给出了在横向位移较大的场合使用万能压力平衡式膨胀节的实例。(3)铰链式膨胀节铰链式膨胀节一般以两、三个作为一组使用,用于吸收单平面管系中一个或多个方向的横向位移。在这种系统中每一个膨胀节被它的铰链所制约,产生纯角位移;然而,被管段分开的每对铰链式膨胀节互相配合,能够吸收横向位移。给定单个膨胀节的角位移。每对铰链式膨胀节所能吸收的横向位移与其铰链销轴之间的距离成正比,因此为了使膨胀节充分发挥效用,应尽量加大这一距离。膨胀节的铰链通常用于承受作用于膨胀节上的全部压力推力;另外,也可以用于承受管道和设备的重量、风载或类似的外力。图30说明如何用双铰链系统吸收单平面z形弯管的主要热膨胀。如果单平面管系的柔性不足以吸收双铰系统的弯曲挠度,或者由弯曲而产生的载荷超过了连接设备的许用极限,则可采用具有三个铰链式膨胀节的系统。图31即表示在单平面Z形弯管中的三铰系统。竖直管段的热膨胀将由B和C两个膨胀节的动作来吸收。于是,很明显,膨胀节B必须能吸收由A和C两个膨胀节一起形成的转动。图32说明在弯管角度不等于90°时,使用铰链式膨胀节的工作原理。在这里只需要使用中间固定支架平面导向支架。图33说明连接设备亦产生平面位移时应用铰链式膨胀节的实例。图34给出了设备与管道连接系统中应用铰链膨胀节的实例。(4)万向铰链式膨胀节正如铰链式膨胀节在平面管系中具有很大的优越性一样,万向铰链式膨胀节在空间管系中具有类似的优越性。万向铰链式膨胀节具有吸收任意平面内的角位移的能力,常常利用这一点将它们组成一对,用来吸收横向位移。图35给出了一个应用实例。如果不可能或不打算利用管道的弯曲来吸收竖直管臂的伸长,则可采用如图36所示由两个万向铰链式膨胀节和一个铰链式膨胀节组成的系统。2、U形波纹管膨胀节刚度和应力计算符号说明:Fex----作用在以Dm为直径的圆周上的轴向力,N;ex----单波轨向变形量,mm;h----波纹管的波高,mm;Dm----波纹管的平均直径,mm;q----波纹管的波距,mm;Dm=Db+hr----波纹管波纹的曲率半径,mm;Db----波纹管直边段内径,mm;a----波纹管波纹的直线段长度,mm;δ----波纹管的名义厚度,mm;δm----波纹管成形后的壁厚,mm;E----波纹管材料的弹性模量,Mpa;m----波纹管厚度为δ的层数;Cm----材料强度系数,热处理态波纹管取Cm=l.5;成形态波纹管取Cm=3.0;Cwb----波纹管纵向焊缝;Cf、Cp、Cd----形状尺寸系数,由图38、41、42求取。fi----波纹管单波轴向刚度,N/mm;Kx----膨胀节整体轴向刚度,N/mm;Ky----膨胀节整钵横向(侧向)刚度,N/mm;Kθ----膨胀节整体弯曲(角向)刚度,K·m/°θ;Ku----计算系数Ku=(3Lu2-3LbLu)/(3Lu2-6LbLu+4Lb2)Lb----波纹管的波纹段长度,mm;Lb=NqN----一个波纹管的波数;Lu----复式膨胀节中,两波纹管最外端间的距离,mm;2.1刚度计算2.1.1波纹管单波轴向刚度计算波纹管的波高与直径之比较小,如将其展开,可简化为如图37(b)所示的两端受轴向线载荷的曲杆。轴向的总力为Fex。在弹性范围内,利用变形能法可以推导出轴向力与轴向变形之间的近似关系式(1)。Fex=[(πDmEδ3)/24C]-exN(1)式中C=0.046r3-0.142hr2+0.285h2+0.083h3mm3(2)则波纹管刚度fi′为fi′=Fex/ex(3)考虑到力学模型的近似性以及波纹管制成后壁厚减薄等因素,对公式(1)进行修正并代入(3)式则得:fi′=(1.7DmEδm3)/(h3Cf)N/mm(4)式中:δm=δ√Db/Dm(5)对于多层结构的波纹管,其刚度按(6)式计算:fi=(1.7DmEδm3m)/(h3Cf)N/mm(6)图38系数Cf2.1.2膨胀节整体弹性刚度计算(1)轴向刚度(a)单式膨胀节整体刚度Kx=fi/N(7)(b)复式膨胀节整体刚度Kx=fi/2N(8)(2)侧向刚度(a)单式膨胀节整体刚度Ky=(1.5Dm2fi)/[LbN(Lb±X)2](9)(b)复式膨胀节整体刚度Ky=(KuDm2fi)/[4NLu(Lu-Lb±X/2)](10)侧向刚度计算中,轴向位移X拉伸时取“+”,压缩时取“-”。(3)整体弯曲刚度Kθ=(πDm2fi)/(1.44×106N)(11)2.2未加强U形波纹管的应力计算(1)内压引起的周向薄膜应力σ2由图39可知,当受内压P作用时,在一个U形波的纵截面上的内力与作用在半个环壳上的外力平衡。4(πr+α)δmσ2=qDmPσ2=(qDmP)/[4(πr+α)δm]MPa(12)几何尺寸r、α有如下关系:r=q/4α=h-q/2(13)将(13)式代入(12)式,得周向薄膜应力为:σ2=(DmP)/[2mδm(0.571+2h/q)]MPa(14)(2)内压引起的径向薄膜应力σ3当波纹管受内压P作用时,在以D与Db为直径的两个环形截面上的内力与轴向外力平衡,则:π(D+Db)δmσ3=(π/4)(D2-Db2)P(15)因D=Db+2h,代入上式,经整理后得:σ3=Ph/2δmmMPa(16)(3)内压引起的径向弯曲应力σ4在经线为半个U形环壳上切出单位宽度的窄条(见图40),设两端固定,并受均布压力P作用,可得最大弯距为:M=P·h2/12(17)断面系数为:W=πDmδm2/6(18)则径向弯曲应力为:σ4=M/w=P·h2/2δm2MPa(19)考虑形状尺寸的影响,引进修正系数(EJMA法)得:σ4=(P·h2Cp)/2cm(20)图39U形膨胀节的几何参数。图40环壳上的几何尺寸(4)由轴向力Fex引起的径向薄膜应力σ5由式(3)、式(4)可得:σ5=Fex/πDmδm=(1.7Eδm2ex)/(πh3Cf)MPa(21)按EJMA法修正后,其公式形式为:σ5=(Eδm2ex)/(2πh3Cf)MPa(22)式(22)为实际计算公式。(5)由轴向力Fex引起的径向弯曲应力σ6可以证明在Fex作用下,最大弯矩发生在波顶B处(见图37),其值为:Mmax=Fexh/2(23)断面系数为:W=πDmδm2/6(24)则弯曲应力为:σ6=Mmax/w=3Fexh/πDmδm2MPa(25)引入公式(3)、(4)的关系,得:σ6=(5Eδmex)/(πh2Cd)MPa(26)按EJMA法修正后得:σ6=(5Eδmex)/(3h2Cd)MPa(27)(6)应力评定a、薄膜应力σ2≤Cwb[σ]bt(28)σ3≤[σ]bb、弯曲应力:σ3+σ4≤Cm[σ]bt(29)c、经向总应力范围:σt=0.7(σ3+σ4)+σ5+σ6(30)以上介绍的U形膨胀节计算的方法,尽管由于力学模型的简化,给计算结果带来一定程度的误差,但因公式比较简单,又根据实际情况进行了修正与调整,故在工程设计时仍然得到广泛的应用。U形膨胀节也可看作环壳与环板的组合体,承受轴对称的载荷。列出平衡方程进行求解也可得出计算公式。但其过于繁复,不便于应用。近年来利用有限元法对膨胀节的应力分析研究工作也取得了进展。它以有限单元的集合代替无限单元的连续体,作