数列基础测试题及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共4页数列1.{an}是首项a1=1,公差为d=3的等差数列,如果an=2005,则序号n等于().A.667B.668C.669D.6702.在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+a5=().A.33B.72C.84D.1893.如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则().A.a1a8>a4a5B.a1a8<a4a5C.a1+a8<a4+a5D.a1a8=a4a54.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为41的等差数列,则|m-n|等于().A.1B.43C.21D.835.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为().A.81B.120C.168D.1926.若数列{an}是等差数列,首项a1>0,a2003+a2004>0,a2003·a2004<0,则使前n项和Sn>0成立的最大自然数n是().A.4005B.4006C.4007D.40087.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2=().A.-4B.-6C.-8D.-108.设Sn是等差数列{an}的前n项和,若35aa=95,则59SS=().A.1B.-1C.2D.219.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则212baa的值是().A.21B.-21C.-21或21D.4110.在等差数列{an}中,an≠0,an-1-2na+an+1=0(n≥2),若S2n-1=38,则n=().A.38B.20C.10D.9二、填空题11.设f(x)=221x,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为.12.已知等比数列{an}中,(1)若a3·a4·a5=8,则a2·a3·a4·a5·a6=.第2页共4页(2)若a1+a2=324,a3+a4=36,则a5+a6=.(3)若S4=2,S8=6,则a17+a18+a19+a20=.13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.14.在等差数列{an}中,3(a3+a5)+2(a7+a10+a13)=24,则此数列前13项之和为.15.在等差数列{an}中,a5=3,a6=-2,则a4+a5+…+a10=.16.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=.三、解答题17.(1)已知数列{an}的前n项和Sn=3n2-2n,求证数列{an}成等差数列.(2)已知a1,b1,c1成等差数列,求证acb,bac,cba也成等差数列.18.设{an}是公比为qa1,a3,a2成等差数列.(1)求q的值;(2)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.19.数列{an}的前n项和记为Sn,已知a1=1,an+1=nn2Sn(n=1,2,3…).求证:数列{nSn}是等比数列.20.已知数列{an}是首项为a且公比不等于1的等比数列,Sn为其前n项和,a1,2a7,3a4成等差数列,求证:12S3,S6,S12-S6成等比数列.第3页共4页一、选择题1.{an}是首项a1=1,公差为d=3的等差数列,如果an=2005,则序号n等于().A.667B.668C.669D.6702.在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+a5=().A.33B.72C.84D.1893.如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则().A.a1a8>a4a5B.a1a8<a4a5C.a1+a8<a4+a5D.a1a8=a4a54.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为41的等差数列,则|m-n|等于().A.1B.43C.21D.835.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为().A.81B.120C.168D.1926.若数列{an}是等差数列,首项a1>0,a2003+a2004>0,a2003·a2004<0,则使前n项和Sn>0成立的最大自然数n是().A.4005B.4006C.4007D.40087.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2=().A.-4B.-6C.-8D.-108.设Sn是等差数列{an}的前n项和,若35aa=95,则59SS=().A.1B.-1C.2D.219.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则212baa的值是().A.21B.-21C.-21或21D.4110.在等差数列{an}中,an≠0,an-1-2na+an+1=0(n≥2),若S2n-1=38,则n=().A.38B.20C.10D.9二、填空题11.设f(x)=221x,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为.12.已知等比数列{an}中,(1)若a3·a4·a5=8,则a2·a3·a4·a5·a6=.第4页共4页(2)若a1+a2=324,a3+a4=36,则a5+a6=.(3)若S4=2,S8=6,则a17+a18+a19+a20=.13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.14.在等差数列{an}中,3(a3+a5)+2(a7+a10+a13)=24,则此数列前13项之和为.15.在等差数列{an}中,a5=3,a6=-2,则a4+a5+…+a10=.16.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=.三、解答题17.(1)已知数列{an}的前n项和Sn=3n2-2n,求证数列{an}成等差数列.(2)已知a1,b1,c1成等差数列,求证acb,bac,cba也成等差数列.18.设{an}是公比为qa1,a3,a2成等差数列.(1)求q的值;(2)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.19.数列{an}的前n项和记为Sn,已知a1=1,an+1=nn2Sn(n=1,2,3…).求证:数列{nSn}是等比数列.20.已知数列{an}是首项为a且公比不等于1的等比数列,Sn为其前n项和,a1,2a7,3a4成等差数列,求证:12S3,S6,S12-S6成等比数列.

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功