泰勒公式及麦克劳林公式推导证明麦克劳林公式是泰勒公式(在x。=0下)的一种特殊形式。若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:f(x)=f(0)+f'(0)x+f''(0)/2!·x^2,+f'''(0)/3!·x^3+……+f(n)(0)/n!·x^n+Rn其中Rn是公式的余项,可以是如下:1.佩亚诺(Peano)余项:Rn(x)=o(x^n)2.尔希-罗什(Schlomilch-Roche)余项:Rn(x)=f(n+1)(θx)(1-θ)^(n+1-p)x^(n+1)/(n!p)[f(n+1)是f的n+1阶导数,θ∈(0,1)]3.拉格朗日(Lagrange)余项:Rn(x)=f(n+1)(θx)x^(n+1)/(n+1)![f(n+1)是f的n+1阶导数,θ∈(0,1)]4.柯西(Cauchy)余项:Rn(x)=f(n+1)(θx)(1-θ)^nx^(n+1)/n![f(n+1)是f的n+1阶导数,θ∈(0,1)]5.积分余项:Rn(x)=[f(n+1)(t)(x-t)^n在a到x上的积分]/n![f(n+1)是f的n+1阶导数]泰勒公式在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。泰勒公式(Taylor'sformula)带Peano余项的Taylor公式(Maclaurin公式):可以反复利用L'Hospital法则来推导,f(x)=f(x0)+f'(x0)/1!*(x-x0)+f''(x0)/2!*(x-x0)^2+…+f^(n)(x0)/n!(x-x0)^n+o((x-x0)^n)泰勒中值定理(带拉格郎日余项的泰勒公式):若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x0)多项式和一个余项的和:f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2,+f'''(x0)/3!*(x-x0)^3+……+f(n)(x0)/n!*(x-x0)^n+Rn(x)其中Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x0)^(n+1),这里ξ在x和x0之间,该余项称为拉格朗日型的余项。(注:f(n)(x0)是f(x0)的n阶导数,不是f(n)与x0的相乘。)使用Taylor公式的条件是:f(x)n阶可导。其中o((x-x0)^n)表示比无穷小(x-x0)^n更高阶的无穷小。Taylor公式最典型的应用就是求任意函数的近似值。Taylor公式还可以求等价无穷小,证明不等式,求极限等推导证明我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n.接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。折叠麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+Rn其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),这里0;;θ1。证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式:f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+f(n+1)(ξ)/(n+1)!?x^(n+1)由于ξ在0到x之间,故可写作θx,0;;θ1。折叠麦克劳林展开式的应用:1、展开三角函数y=sinx和y=cosx。解:根据导数表得:f(x)=sinx,f'(x)=cosx,f''(x)=-sinx,f'''(x)=-cosx,f⑷(x)=sinx……于是得出了周期规律。分别算出f(0)=0,f'(0)=1,f''(x)=0,f'''(0)=-1,f⑷=0……最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。)类似地,可以展开y=cosx。2、计算近似值e=limx→∞(1+1/x)^x。解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项:e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n!当x=1时,e≈1+1+1/2!+1/3!+……+1/n!取n=10,即可算出近似值e≈2.7182818。3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位)证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。然后让sinx乘上提出的i,即可导出欧拉公式。有兴趣的话可自行证明一下。公式展开折叠原理e的发现始于微分,当h逐渐接近零时,计算之值,其结果无限接近一定值2.71828...,这个定值就是e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写e来命名此无理数.计算对数函数的导数,得,当a=e时,的导数为,因而有理由使用以e为底的对数,这叫作自然对数.若将指数函数ex作泰勒展开,则得以x=1代入上式得此级数收敛迅速,e近似到小数点后40位的数值是将指数函数ex扩大它的定义域到复数z=x+yi时,由透过这个级数的计算,可得由此,DeMoivre定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i,z2=x2+y2i,另方面,所以,我们不仅可以证明e是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是Hermite在1873年得到的.甲)差分.考虑一个离散函数(即数列)R,它在n所取的值u(n)记成un,通常我们就把这个函数书成或(un).数列u的差分还是一个数列,它在n所取的值以定义为以后我们干脆就把简记为(例):数列1,4,8,7,6,-2,...的差分数列为3,4,-1,-1,-8...注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推.差分算子的性质(i)[合称线性](ii)(常数)[差分方程根本定理](iii)其中,而(n(k)叫做排列数列.(iv)叫做自然等比数列.(iv)'一般的指数数列(几何数列)rn之差分数列(即「导函数」)为rn(r-1)(乙).和分给一个数列(un).和分的问题就是要算和.怎么算呢我们有下面重要的结果:定理1(差和分根本定理)如果我们能够找到一个数列(vn),使得,则和分也具有线性的性质:甲)微分给一个函数f,若牛顿商(或差分商)的极限存在,则我们就称此极限值为f为点x0的导数,记为f'(x0)或Df(x),亦即若f在定义区域上每一点导数都存在,则称f为可导微函数.我们称为f的导函数,而叫做微分算子.微分算子的性质:(i)[合称线性](ii)(常数)[差分方程根本定理](iii)Dxn=nxn-1(iv)Dex=ex(iv)'一般的指数数列ax之导函数为(乙)积分.设f为定义在[a,b]上的函数,积分的问题就是要算阴影的面积.我们的办法是对[a,b]作分割:;其次对每一小段[xi-1,xi]取一个样本点;再求近似和;最后再取极限(让每一小段的长度都趋近于0).若这个极限值存在,我们就记为的几何意义就是阴影的面积.(事实上,连续性也「差不多」是积分存在的必要条件.)积分算子也具有线性的性质:定理2若f为一连续函数,则存在.(事实上,连续性也「差不多」是积分存在的必要条件.)定理3(微积分根本定理)设f为定义在闭区间[a,b]上的连续函数,我们欲求积分如果我们可以找到另一个函数g,使得g'=f,则注:⑴⑵两式虽是类推,但有一点点差异,即和分的上限要很小心!上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样.我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算(un)的和分及f的积分,只要去找另一个(vn)及g满足,g'=f(这是差分及微分的问题),那么对vn及g代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是以简御繁的精神.牛顿与莱布尼慈对微积分最大的贡献就在此.甲)Taylor展开公式这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数f,我们要研究f的行为,但f本身可能很复杂而不易对付,于是我们就想法子去找一个较「简单」的函数g,使其跟f很「靠近」,那么我们就用g来取代f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清两个问题:即如何选取简单函数及逼近的尺度.(一)对于连续世界的情形,Taylor展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到n阶都可导微的函数f,我们要找一个n次