直流电机驱动电路的设计来源:作者:驱动电路的性能很大程度上影响整个系统的工作性能。有许多问题需要慎重设计,例如,导通延时、泵升保护、过压过流保护、开关频率、附加电感的选择等。1.开关频率和主回路附加电感的选择力矩波动也即电流波动,由系统设计给定的力矩波动指标为ΔI/IN,对有刷直流电动机而言,通常在(5~10)%左右。为了便于分析可认为ΔI/IN=ΔI/(Us/Rd)(1)式中Rd为电枢回路总电阻。代入前面各种驱动控制方式的ΔI表达式中,消去Us,可求出:对于单极性控制 Ld/Rd≥5T~2.5T(可逆或不可逆)(2)对于双极性控制Ld/Rd≥10T~5T(3)式中T为功率开关的开关周期。对于有刷直流电动机,电磁时间常数Ld/Rd一般在10ms至几十毫秒。若采用GTR,开关频率可取2KHz左右,T=0.5ms。若采用IGBT,开关频率可取18KHz以上,所以上式均能满足。若采用GTO或可控硅功率器件,由于工作频率只有100Hz左右,此时应考虑在主回路附加电抗器,且Ld=Lf+La(4)对不可逆系统还应进一步检查临界电流,IaL=UsT/8Ld≤Ia0应小于电机空载电流,防止空载失控。对于低惯量电机、力矩电动机,由于电磁时间常数很小(几个毫秒或更小),此时应考虑采用开关频率高的IGBT功率开关器件。2.功率驱动电路的选择图1H桥开关电路(Ⅰ) 图2H桥开关电路(Ⅱ)小功率驱动电路可以采用如图1所示的H桥开关电路。UA和UB是互补的双极性或单极性驱动信号,TTL电平。开关晶体管的耐压应大于1.5倍Us以上。由于大功率PNP晶体管价格高,难实现,所以这个电路只在小功率电机驱动中使用。当四个功率开关全用NPN晶体管时,需要解决两个上桥臂晶体管(BG1和BG3)的基极电平偏移问题。图2中H桥开关电路利用两个晶体管实现了上桥臂晶体管的电平偏移。但电阻R上的损耗较大,所以也只能在小功率电机驱动中使用。当驱动功率比较大时,一般桥臂电压也比较高,例如直接取工频电压,单相220V,或三相380V。为了安全和可靠,希望驱动回路(主回路)与控制回路绝缘。此时,主回路必须采用浮地前置驱动。图3所示的浮地前置驱动电路都是互相独立的,并由独立的电源供电。由于前置驱动电路中采用了光电耦合,使控制信号分别与各自的前置驱动电路电气绝缘,于是使控制信号对主回路浮地(或不共地)图3大功率驱动电路3.具有光电耦合绝缘的前置驱动电路对于大功率驱动系统,希望将主回路与控制回路之间实行电气隔离,此时常采用光电耦合电路来实现。有三种常用的光电耦合电路如图4所示,其中普通型的典型型号是4N25、117等,高速型的典型型号有985C,高电流传输比型也称达林顿型,典型型号有113等。图4典型光电耦合器电路图中,普通型光耦的Ic/Id=0.1~0.3;高速型光耦采用光敏二极管;高电流传输比型光耦的Ic/Id=0.5;它们的上升延时时间和关断延时时间分别为tr,ts4~5μs;tr,ts1.5μs;tr,ts为10μs左右。光电耦合器与后续电路结合就能构成前置驱动电路,如图5所示。这个前置驱动电路的上升延时tr——3.9μs,关断延时ts——1.6μs,可以在中等功率系统中使用。图5前置驱动电路为了对功率开关提供最佳前置驱动,现在已有很多专用的前置驱动模块。这种驱动模块对功率开关提供理想前置驱动信号,保证功率开关迅速导通,迅速关断,对功率开关的饱和深度进行最佳控制,对功率开关的过电流、过热进行检测和保护。例如,EX356、EX840等等。4.防直通导通延时电路对H桥驱动电路上下桥臂功率晶体管加互补信号,由于带载情况下,晶体管的关断时间通常比开通时间长,这样,例如当下桥臂晶体管未及时关断,而上桥臂抢先开通时就出现所谓“桥臂直通”故障。桥臂直通时电流迅速变大,造成功率开关损坏。所以设置导通延时,是必不可少的。图6是导通延时电路及其波形。图6导通延时电路及波形导通延时,有时也称死区时间,可通过RC时间常数来设置;对GTR可按0.2μs/A来设置;对MOSFET可按0.1~0.2μs设计,且与电流无关,IGBT可按2~5μs设计。举例说明,若为GTR,f=5kHz,双极性工作,调宽区域为T/2=1/10=0.1ms。若I=100A,则Δt=0.2X100=20μs,则PWM调制分辨率最大可能性为(T/2)Δt=0.1/0.02=5(5)这说明死区时间占据了调制周期的1/5,显然是不可行的。所以对于100A的电机系统,GTR的开关频率必须低于5kHz。例如,2kHz以下,此时分辨率达12.5左右。驱动电路的设计还有很多问题,例如过压、过流、过热、泵升保护等等。直流电机伺服驱动开关电源的EMI滤波器设计引言直流电机专用伺服驱动电源,已不仅仅是传统意义上的开关电源,它直接参与了直流电机的控制工作,其特有的微机接口控制和上电时序控制功能尤其适合直流电机驱动系统,相对传统的通用型大功率电源有着明显的的技术优势,其多功能的技术特点,符合电机驱动电源系统的发展方向。然而,随着电子设计、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,尤其会对微机和伺服驱动系统易产生严重干扰,常使人防不胜防。电磁干扰滤波器(EMIFilter)是近年来被推广应用的一种新型组合器件。它能有效地抑制电网噪声,提高伺服系统和电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。本文介绍的就是一种直流电机伺服驱动开关电源的EMI滤波器设计。滤波器设计根据直流电机伺服驱动开关电源系统的特点,本设计中的EMI滤波器采用双级LC网络设计,双级LC网络插入开关电源电路中的位置如图1所示。假定直流电源侧为低阻抗电压源US,DC/DC变换器输入端为高阻抗电流源i(t)。那么LC滤波器只能选择“Γ”型结构,最简单的双“Γ”型LC网络如图2所示。其频域传递函数为:由于LC网络谐振时,会产生很大的电流(电压)峰值,这个网络有3个频率点的谐振峰值是必须限制,否则,会产生更大的EMI。限制这3个频率点的峰值是设计这个滤波器的主要指导思想。这3个频率点分别是:第一级滤波器的谐振频率:第二级滤波器的谐振频率:第3个频率点就是DC/DC变换器的开关频率f。下面具体讨论滤波器设计方法,即选取LC网络中元件参数的方法:由上面3个式子,3个频率点对应的传递函数的幅值分别为:元件参数选取方法讨论如下:为了限箭f1点的谐振峰值,要求插入衰减zollogH1=zologC1/C2<0,即C1C21。根据经验,它们的比值范围为元件参数选取步骤归纳如下:(1)由(7)~(9)式确定了比值,这样只有二个参数是独立的;(2)由于滤波器负载侧(开关电流i(t)侧)谐波分量较大,C2应选一个大容量电容器。(3)由(1)、(2)步结果代入(9)式,就可以确定另一个独立参数。(4)由直流侧电源Us确定电容器额定电压值Uce≥2Us。例如:若开关电源开关频率f=50kHz,Us=24V,由上述参数选取原则,选取二组参数见表1。EMI滤波器的技术参数及测试方法主要技术参数EMI滤波器的主要技术参数有:额定电压、额定电流、漏电流、测试电压、绝缘电阻、直流电阻、使用温度范围、工作温升Tr、插入损耗AdB、外形尺寸、重量等。上述参数中最重要的是插入损耗(亦称插入衰减),它是评价电磁干扰滤波器性能优劣的主要指标。插入损耗(AdB)是频率的函数,用dB表示。设电磁干扰滤波器插入前后传输到负载上的噪声功率分别为P1、P2,有公式:AdB=101g(P1/P2)(10)假定负载阻抗在插入前后始终保持不变,则P1=V12/Z,P2=V22/Z。式中V1是噪声源直接加到负载上的电压,V2是在噪声源与负载之间插入电磁干扰滤波器后负载上的噪声电压,且V1V2。代入(10)式中得到:AdB=201g(V1/V2)(11)插入损耗的测量方法插入损耗用分贝(dB)表示,分贝值愈大,说明抑制噪声干扰的能力愈强。测量插入损耗的电路如图3所示。US是噪声信号发生器,Zi是信号源的内部阻抗,ZL是负载阻抗,一般取50Ω。噪声频率范围可选10kHZ~30MHz。首先要在不同频率下分别测出插入前后负载上的噪声压降V1、V2,再代入(11)式中计算出每个频率点的AdB值,最后绘出插入损耗曲线。结语实验结果表明本文设计的LC双级滤波器具有滤波效果好、结构简单、价格便宜、实用性强等特点。