浅析大数据与传统经济学

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

收稿日期:2015/5/28作者简介:李晓雨(1993—),女,研究方向:信息管理与信息系统,电子邮箱:xiaoyu_li0827@163.com浅析大数据与传统经济学大数据对传统经济学体制带来的挑战与机遇李晓雨(山东建筑大学管理工程学院,山东省济南市250100)摘要:文章从大数据的发展现状分析入手,讨论了大数据对传统经济学带来的机遇与挑战。运用大数据经济学的概念,分析了大数据经济学与信息经济学、信息技术等相关学科的关系。并将理论研究与实践应用实时地统一在一起,最后对大数据经济学发展前景进行了展望,认为大数据经济学不仅将理论科学、实验科学、复杂现象模拟统一在一起,而且将自然科学和社会科学统一在一起,具有非常好的发展前景。关键词:大数据;大数据经济学;传统经济学;大数据统计学;中图分类号:F49文献标识码:ABigdataandtraditionaleconomicsThechallengeandopportunityofbigdatatothetraditionaleconomicsystemAbstract:Thepaperanalyzesthechallengeofbigdatatotraditionaleconomicsfrombigdatadevelopment.Usingtheconceptofbigdataeconomics,therelationshipbetweenbigdataeconomicsandinformationeconomics,informationtechnologyandotherrelatedsubjectsisanalyzed..Andtheoreticalresearchandpracticalapplicationinrealtimeunifiedtogether.Finally,thedevelopmentprospectsofthebigdataeconomicsprospect,thatbigdataeconomicswillnotonlyscientifictheory,scientificexperiments,complexphenomenonsimulationunifiedtogether,andthesystemofnaturalscienceandsocialscienceatogether,withverygoodprospectsfordevelopment.Keyword:bigdata;bigdataeconomics;traditionaleconomics;bigdatastatistics引言自微博成立以来,新浪微博的用户已经增至5亿人,每天就要发布4亿多条讯息,每天更新的照片超过1000万张,美国的Facebook公司利用将近10万亿条价格记录来预测飞机票的价格,准确率高达75%,采用该系统购票每张机票平均可节省50美元。据专家预测未来几年的全球大数据将会增加8倍,世界上存储的数据将达到1.2ZB。美国麦肯锡公司(McKinset&Company)曾对全球的大数据分布做了一个研究和统计,中国每年的新增数据量约为250PB,美国约为3500PB,欧洲约为2000PB,可见大数据已经深深地充斥了人类经济社会的诸多角落。关于什么是大数据,目前业界并没有公认的说法,研究机构Gartner给出了这样的定义:“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。IBM公司则认为大数据具有3V特点,即规模性(volume),多样性(variety),实时性(velocity)。以IDC为代表的业界认为大数据具有4V特点,即在3V的基础上增加了价值性(value)。《著云台》的分析师团队认为,大数据(Bigdata)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。《计算机学报》刊登的“架构大数据:挑战、现状与展望”一文列举了大数据分析平台需要具备的几个重要特性,对当前的主流实现平台——并行数据库、MapReduce及基于两者的混合架构进行了分析归纳,指出了各自的优势及不足,同时也对各个方向的研究现状及作者在大数据分析方面的努力进行了介绍,对未来研究做了展望。著名未来学家阿尔文•托夫勒(1980)很早就在其经典著作《第三次浪潮》中,将大数据热情地赞誉为“第三次浪潮的华彩乐章”。2012年世界经济论坛发布了《大数据、大影响》[3]的报告,从金融服务、健康、教育、农业、医疗等多个领域阐述了大数据给世界经济社会发展带来的机会。2012年3月,奥巴马政府发布《大数据研究和发展倡议》[4],投资2.5亿美元,正式启动大数据发展计划,计划在科学研究、环境、生物医学等领域寻求突破。从某种程度上说,大数据是数据分析的前沿技术。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。大数据最核心的价值就是在于对于海量数据进行存储和分析。相比起现有的其他技术而言,大数据的“廉价、迅速、优化”这三方面的综合成本是最优的。大数据是工业传感器、互联网、移动数码等固定和移动设备产生的结构化数据、半结构化数据与非结构化数据的总和,大数据重在实时的处理与应用,以获得所需要的信息和知识,从而实现商业价值以及为公共管理服务,数据挖掘和人工智能等应用工具在大数据处理中发挥着重要作用,现代信息技术是大数据赖以存在和发展的重要支撑力量。那么,大数据对经济夜来说意味着什么?对传统经济学会带来哪些冲击?传统经济学又应该如何面对大数据带来的挑战?一:大数据给经济学带来的影响Victor(2012)在其最新著作《大数据时代——生活、工作与思维的大变革》中指出,大数据时代,思维方式要发生3个变革:第一,要分析与事物相关的所有数据,而不是依靠分析少量数据样本;要总体,不要样本。第二,要乐于接受数据的纷繁复杂,而不再追求精确性。第三,不再探求难以捉摸的因果关系,应该更加注重相关关系。杨华磊分析了高频数据对传统经济学研究范式的冲击,出现了“非主流经济学就是致力研究异常现象的经济学”,当然高频数据与大数据不是一回事,两者之间存在交集。那么,大数据给经济学带来了哪些影响呢?1.1大数据研究对象变成了总体传统经济学研究中,由于搜集数据的条件所限,人们往往对数据进行抽样,用少量样本来进行研究,这一传统一直延续至今,并且成为经济学研究的主流做法,但是抽样的质量对研究结果影响很大,比如公众对政府统计部门公布的物价指数和基尼系数引发的怀疑。在大数据时代,很多场合下已经无需进行针对样本的研究,直接将总体作为研究对象,从而很大程度上改变了数据来源方式,对数据的处理也产生了深远的影响。1.2大数据不需要基于假设检验的研究传统的经济学研究,往往根据研究内容提出数个假设,然后再采用数学模型基于统计检验来验证假设。但在大数据时代,由于有足够的变量、足够的数据,可以采用人工智能来进行数据挖掘和知识发现,得到的结论是成百上千的,和传统经济学研究需要验证假设的数量永远不是一个数量级。在大数据时代,如果继续采用传统的假设检验方法进行研究,永远是不充分的、不完备的、无法满足需要的。大数据时代重在对数据处理的多样化结果进行分析,可以是基于经济学的,也可以是基于应用的,从而辅助人们决策。此外,由于变量的完备性要求使得传统的基于假设验证的研究有时变得十分尴尬。比如,研究研发投入对企业绩效的影响,需要考虑的不仅仅是研发投入,还要考虑企业资本结构、竞争水平、人员素质、行业特点、管理能力等诸多因素,研究者重点关注的是研发投入的弹性系数,但却得到了其他所有数十个变量的弹性系数,从而使研究重心不容易掌握。1.3大数据使得因果关系变得不太重要传统经济学是一门解释科学,重在对经济现象的解释,了解他们的因果关系,但在大数据时代,这样做是远远不够的,大数据甚至可以发现事物发展潜在的规律,以供经济学家解释,具有一定的“智能性”,某种程度上超越了经济学研究的因果关系。大数据并没有改变因果关系,但是使传统经济学的因果关系变得不太重要。比如经济学家在预测房价时,无非是根据住房价格变化的影响因素来进行分析,比如经济发展水平、人均收入、土地价格、宏观房产政策、地点等因素。但谷歌预测房价时,根据住房搜索查询量变化进行预测,结果比不动产经济学家的预测更为准确及时。IBM日本公司,通过检索关键词“新订单”、“雇员”、“生产”等来预测采购经理人指数,仅用6小时就得出结果,并且和专业的采购人指数分析师们计算的结果基本一致。大数据并没有改变因果关系,但使因果关系变得意义不大,很多时候因果关系成为“正确的废话”。1.4传统的因果关系有时无法验证弄清事物之间的内在联系和作用机制,一直是传统经济学研究的核心。但有时因果关系是没有办法验证的。比如新产品上市,人们往往倾向于购买新产品,这样对旧产品的需求会下降,那么旧产品价格应该立即回落,这是其一。从另外一个角度,如果大家都认识到这一点,就会贪便宜购买旧产品,短期内会造成旧产品供不应求,反而导致旧产品涨价。究竟是涨是跌,要看这两种因素谁弱谁强,采用传统经济学研究方法是难以验证这两种效应的,只能验证两种效应作用的综合结果。实际情况是,在大数据时代,西雅图Decide.comg公司分析了近400万商品的超过250亿条价格信息,发现新产品上市时,短期内旧产品价格是上涨的,过一段时间才逐步回落。采用大数据,既可以知道多少人购买旧产品,也能知道多少人购买新产品,以及旧产品价格变化的规律。在这种情况下,我们知道所有的因果关系,却难以检验,并且没有意义,知道结果更重要。1.5传统经济学研究具有滞后性传统经济学对于新生事物是不敏感的,必须等事情发生并且成长到一定规模以后才能搜集到足够数据进行相关研究。在大数据时代,可以通过海量数据对经济行为进行分析,一旦有新情况、新动态立即予以关注,从而实现对新生事物的早期干预和分析,因此具有前瞻性。大数据本身就具有智能,可以辅助经济学发现知识。1.6大数据对基于统计检验的计量经济学冲击很大建立在回归和统计检验基础上的计量经济学以其严谨的逻辑成为经济学研究的重要方法论,迄今为止,诺贝尔经济学奖获得者有近半数是计量经济学家,但大数据动摇了这一根基,比如采用普通回归研究自变量X于因变量Y的关系,对于X回归系数采用t检验,一般认为相伴概率小于0.05(特殊情况可以放大到0.1)就说明两变量相关。其实在这种情况下,犯两变量不相关错误的可能性是5%,以CNNIC发布的《第31次中国互联网络发展状况统计报告》[10]为例,2012年底我国网民数量达5.64亿人,假设我们研究网民平均受教育年限(X)与上网时长(Y)的关系,5%就是2820万人,此时我们还能漠视这5%的错误吗?同样,如果t检验的相伴概率为0.95,那么很明显说明平均受教育年限与上网时长不相关,但同样会犯错误,即有5%的可能性平均受教育年限(X)与上网时长(Y)是相关的,会涉及2820万网民,这同样是不能忽视的。1.7大数据对经济学建模提出挑战传统的经济学研究,往往采用1个或少数几个数学模型来进行研究,但任何模型都各有长处,也各有其局限,没有包治百病万能的数学模型。比如动态面板容易使投入变量的弹性系数估计变小,空间面板容易出现空间矩阵设置方法不当导致结果偏误,面板变系数模型难以和空间面板结合使用,面板联立方程模型对方程形式的要求极高,面板向量自回归模型难以和空间面板融合等等。在研究同一问题时,可用模型其实较多,有没有最佳模型呢?这恐怕是个无解的问题。实

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功