浅谈数学启发式教学摘要数学教学是数学思维的教学,随着我国基础教育改革的深入,如何引导学生参与到教学过程中来,特别是如何让学生学会学习,已成为当今课程改革关注的要点之一,也是“素质教育”的主要目标。启发式教学是我国传统教育思想的精髓,是一切优秀教学方法的指导思想,是实施素质教育的最佳途径和有效方式。现代启发式教学能很好改善传统的教学模式,引导学生主动参与,达到师生互动的目的,从而更有效地培养学生学习的自主性、能动性和创造性。因此,中学数学启发式教学是一个值得探讨的问题。本文首先简述了启发式教学的由来,思想内涵。之后总结分析了启发式教学的主要特点,阐述了数学启发式教学的基本原则,并进行了相应的案例分析。最后归纳出了当前启发式教学存在的一些不足之处。关键词启发式教学中学数学教学案例1启发式教学概述1.1启发式教学的由来启发式教学是一种古老而又年轻的教学思想,它源远流长,博大精深,且历久弥新。我国早在春秋战国时期,大教育家、思想家孔子就提出了“不愤不启,不徘不发,举一隅不以三隅反,则不复也”。而在国外,古希腊的思想家苏格拉底以发问为主的教学方法开创了西方启发式教学的先河。随着时代的进步与发展,启发式教学不断吸收并注入了新鲜血液,在当前的教学领域更显得生机勃勃,更具有优越性,值得大力推广。从现代意义来讲,启发式教学就是根据学生认识的客观规律以及学生的理解能力,充分调动学生学习的主动性,激发其内在的学习动力,通过引导学生的学习过程,使他们经过独立思考掌握知识,从而提高学生理解,分析,解决问题的能力。1.2启发式教学的思想内涵现代启发式教学思想内涵体现在以下方面:(1)启发式教学是以学生为主体,以重新认识学习者的地位和作用,建构新的学生主体观为目的。这种新的学习观念强调学生作为认识、学习的主体,必须具有主动性、能动性和创造性。现代启发式教学就是以学生能不能发现问题、解决问题并勇于创造来判定其优劣。(2)启发式教学的重点是使学生学会学习。古人云:授人以鱼,仅供一饭之需;授人以渔,则终生受用无穷。学会学习也正是现代启发式教学的重点,随着学生主体性的增强,由被动学习向自主学习过渡,最后实现由教到不教的转化。(3)启发式教学侧重学生思维过程和思维方法的启发。它是以当代认知心理学的最新研究成果为理论依据的,它重视教学活动中学生的认知过程,特别是思维过程的充分展现,真正体现了以学生为主体、以学生发展为主线的全新教学理念。2启发式教学的特点启发式教学作为一种教学论思想,既要指导具体的教学实践活动,又要在具体的教学方法上体现出应有的特点。2.1教学过程的互动性现代教学方法是以完成现代教学任务为目的的、师生共同活动的方法。它既包括教师“揭标、设疑、导练、评价”的教法,又包括学生“自学、解疑、应用、矫正”的学法。中学数学课的教学不仅是数学知识的传授过程,更重要的是培养一种以此为基础的分析和解决问题的思维过程。教师要把自己置于与学生平等的地位,关注学生学习的反馈结果,增强教学的针对性和有效性。同时,学生由于参与到教学过程中,学习的主动性、积极性提高了,在教学活动中,教、学双方都在采取行动,各自在其中有所收获。2.2教学对象的能动性在教学过程中,学生是主体,教师是主导,“教”应为“学”服务。正如苏格拉底所说的那样“教师在课堂上讲了些什么并不重要,学生在课堂上想了些什么要重要千万倍。”中学数学课的教学效果往往取决于教学对象是否会灵活运用所学内容,而教学对象是否能灵活运用所学内容,又取决于这些内容是否能满足教学对象的需要。数学课启发式教学就要把教学对象作为主体,根据学生的学习动机、兴趣形成的特点和规律,提高学生学习数学的自觉性和积极性。2.3学习的“双部性”所谓“双部性”是指教师引导学生活动时,既要注意学生的外部活动,又要注意学生的内部活动。传统的教学方法往往只注意学生的外部活动,只注意他们听课注意力是否集中,实验操作是否有秩序,观察是否细心。但是,有时学生活动的外部表现尽管相同,但从内部来说则可能完全不同。原苏联教育学家休金娜说“教学方法的教育学价值常常是由认识过程的隐蔽的、内部的方面决定的,而不取决于该过程的外部表现形式。”因此,现代教学方法不仅注意学生的外部活动,而且更加重视学生的内部活动。3数学启发式教学方法与案例分析启发式教学原则是各种教学方法的灵魂,应渗透在教学活动的各个方面,并贯彻教学过程的始终。教师在典型示范与一般要求相结合、讲授与引导相结合、肯定与补充相给合的原则指导下可采取多种多样的形式进行启发。在对学生进行启发的过程中,“问”的艺术是启发的关键,是研究和表现启发式教学的艺术性的重要方面。“问”的目的是启发学生自己进行思考,调动学生“参与”的积极性。通过“问”,让学生愿意提出自己的想法,与教师商讨。数学学习的实质就是解决数学问题,即学生怎样数学地提出问题和解决问题。数学教学应当从问题开始,以问题引导数学学习。可见,“问”在启发诱导的过程中极其重要。那么,教师在教学时,如何通过恰当的“问”来启发诱导学生呢?(1)针对学生的差异,提问要有层次性、递度性教学提问是师生共同参与的双边活动。所以教师在问题的设置上必须考虑到学生的实际情况,合理确定问题的难度与坡度,既做到面向全体学生提出问题,以免造成“少数人表演,多数人陪坐”的现象,也需区别对待,针对学生的个别差异,用不同的方式提出不同类型、不同层次的问题。例如把下列各式因式分解:1、mymxxyx2;2、44x;因为第一问比较简单,所以提问的层次是中等生,第二问需要添项、拆项,所以提问的对象是优秀学生。解1:)()(2yxmyxxmymxxyx=))((xmyx;2:)22)(22()2()2(44422222224xxxxxxxxx(2)掌握发问时机,提问应该有的放矢,抓住关键点教学需要是设计提问的客观依据。在整个教学过程中,教师随时都可以发问,但要保证提问的质量和效果,就必须要注意发问的时机及对教材的重点与难点如何发问,发问时应有的放矢,抓住关键点,以免画蛇添足。那么什么时候是最佳发问时机呢?就是当学生处于孔子所讲的:“必求通而示得,口欲言而不须”的“愤悱”状态的时候。此时,学生注意力集中,思维激活,对教师的发问往往能入耳入脑,取得良效。最佳发问时机既要求教师敏于捕捉,准于把握,也要求教师巧于引发,善于创设。例如解方程012xxx,教师应该问学生是现在平方,还是平移以后平方,而要是老师直接写出12xxx,再两边平方,那题目太容易了。(3)注意发问顺序,所提问题结构要简明合理,含义要清楚、准确、具体教师发问在内容难度上应由浅入深,由易到难,循序渐进。在形式上,教师的发问又切忌按座位顺序点名提问,而应打破次序,有目的地“随机”提问。在问题的结构上,要简明合理,冗长繁杂的问题,使学生很难把握问题的中心。在我们的教学中常常发现教师会问学生“你学了这些知识,有何感想?”“你的体会是什么?”诸如此类的问题,这些笼统的提问,常常使学生不知该如何回答,或者做一些含糊其词、无关痛痒的回答,使教师难以顺着这条线再问下去。因此在提问中要限定问题的范围,避免提问大而空。要把大的问题具体化,尽量使问题的含义表述的清楚、准确。例如:把322xxy向右平移5个单位,所得解析式为。教师要先问学生:第一步做什么?学生答:配方为2)1(2xy,第二步做什么?学生答:求出顶点:(1、2),第三步做什么?学生答:把顶点平移后为(6、2)所以2)7(2xy(4)适时提示点拨,对学生的回答及时归纳总结在课堂提问过程中,教师应该有两个最主要的停顿时间,一是教师提出一个问题后,要等待足够的时间,为学生的回答提供思考的时间,不能马上重复问题或指定学生回答问题,二是指学生回答之后,教师也要等待足够的时间,才能评价学生的答案或者再提出另一个问题,以便他们完整地做出回答。当学生回答问题不够准确完整、流畅,甚至完全“卡壳”时,教师应根据具体情况,给予适当的语言提示,指点迷津,以助学生走出思维误区。对学生的回答,教师要及时进行总结,公正地指出优点或不足,教学提问的总结对学生系统深入掌握所学知识有着非常重要的作用,如若不然,学生对教师提出的问题始终没有清晰、明确、完整的认识,也很难掌握课堂知识。4.当前启发式教学存在不足(1)以练代启认为启发式教学既然与注入式教学相对,就应该增加学生的活动量,即“精讲多练”。多练不一定是坏事,但如果仅停留在模仿阶段(解题术的套用)而大量做一些重复性练习,学生的思维没有经历领悟的过程,就不能说是启发式教学。(2)以活代启这里的“活”不是思维上的活,而是追求教学形式的活跃、热烈,认为教学气氛不热烈就不是启发。常见的有:教师用简单的“对不对?”“是不是?”等问题,换回学生大声的“对”、“不对”、“是”、“不是”。或是哗众取宠,通过一些偏离主题的动作、语言引得学生哄堂大笑等。(3)以已代生教师虽注意分析,分析起来也有条有理、思路清晰,却是“事后诸葛”,往往是教师多次探索后保留的最佳通路,而“最佳”的寻求过程,特别是克服障碍的过程并未表现出来,结果是学生听起来津津有味,做起来却一筹莫展。这些都是没有抓住启发的实质,形而上学地简单套用的结果。(4)提问不科学先点名,后提问题。被叫学生站起来了,但不知道要回答什么,心中无数,惶惶不安。这种提问方法违背了学生的思维规律,会造成一人惊慌,大家松气的局面。问题不分难易,提问不看对象。提问本应从教材和学生实际出发,量体裁衣。如果教师忽视了这一点,信口点名,把难题叫“差生”回答,容易的题目叫“优等生”来回答,这不利于调动学生学习的积极性。数学启发式教学需要理论研究的支持,但更重要的是需要我们在具体课堂实践中有启发式教学的意识,并能深化到教育教学中,真正地体会并落到实处才能使启发式教学在数学教育教学中真正地发挥作用。在我们日常的教学实践中,不是节节课都可以以启发式的教学模式授课,然而对于数学的学习,启发式的教学行为在学生逻辑思维上的作用是不容小觑的,引导学生独立思考,学生学会自我归纳数学思想方法,并将新的知识内化,重新整合自身的数学认知结构,才是我们所最求的目标。参考文献[1]乔石.数学启发式教学研究[D].陕西师范大学,2011.[2]孙玉楼.新型高中数学课堂教学模式——问题启发式教学[J].数理化解题研究(高中版),2013,12:25.[3]杨丽,陶月仙.论启发式教学模式的演变与发展[J].四川教育学院学报,2004,S1:1-2+10.[4]张连敏.浅议启发式教学模式[J].中国教育技术装备,2010,16:13.[5]姜华.启发式教学在高中数学课堂教学中的运用[J].数理化解题研究(高中版),2013,06:21.[6]潘立新.启发式教学在中学数学教师与学生间互动研究[J].数理化学习(初中版),2012,06:48-49.[7]董玉琴.数学启发式教学模式的实践与思考[J].中学生数理化(教与学),2012,10:77.[8]华丽萍.启发式教学在中学数学教学中的应用[J].考试周刊,2014,02:60.[9]何细良.启发式教学在数学中的运用[J].江西教育,2012,Z3:113.