水能的利用水能开发利用的历史也相当悠久。早在古代,我国劳动人民就发明了“水磨”、“水碾”。现代广泛采用的水力发电是人类对水能利用的高级阶段。水能是一种廉价的能源资源,而且还是干净的能源。水能的开发利用一直受到世界各国的重视,将它放在优先开发的地位。一、世界上某些国家水能资源的开发情况——美国水电装机容量居世界第一位据1992年1月1日统计,美国已开发和未开发的常规水电站共7261座,装机容量共计14670万千瓦,年发电量5294亿千瓦时。另外,已开发和已调查的抽水蓄能电站有87处,共4750万千瓦。常规水电站和抽水蓄能电站合计可开发水电装机容量19420万千瓦。1992年初统计,已建常规水电站2304座,共计装机7349万千瓦,年发电量3066亿千瓦时,分别占可开发数的50%和58%;已建抽水蓄能电站38座(其中18座为混合式,20座为纯抽水蓄能)共1810万千瓦。常规水电站和抽水蓄能电站合计2324座,共9159万千瓦。已建100万千瓦以上大型常规水电站10座,大型抽水蓄能电站7座,合计17座共3110万千瓦,占总装机容量的34%。已建3万千瓦以下的小水电站2007座,共823万千瓦,占总装机的9%。在能源危机以后,1984~1992年新建了686座小水电站。正在建设中的常规水电站130万千瓦,抽水蓄能电站97.5万千瓦。预计,到2000年常规水电可达8020万千瓦,抽水蓄能电站2110万千瓦,合计10130万千瓦。二、加拿大水电比重占全国总装机容量的一半以上。至1991年底,加拿大已建水电站6027万千瓦,占全国电力总装机容量10542万千瓦的57.2%;1991年水电发电量3053亿千瓦时,占总发电量4930亿千瓦时的61.9%。加拿大的水电装机容量虽比美国和前苏联少,居世界第三位,但水电年发电量居世界首位,水电装机年利用小时数5066小时,设备利用率较高,因其水电站同时担负电力系统的基荷和峰荷。加拿大全国可开发水电装机容量16280万千瓦,1991年已开发37%;经济可开发水能资源5930万千瓦,现利用率达51.5%。加拿大全国12个省(区)中,魁北克省和不列颠哥伦比亚省的可开发水电装机容量分别为6812万千瓦和2739万千瓦,共计9551万千瓦,占全国的58.7%。已开发水电站也主要在这两个省,1991年底魁北克省已建水电站2809万千瓦,水电比重93.9%;不列颠哥伦比亚省已建水电站1085万千瓦,水电比重86.9%。两省共有水电站3894万千瓦,占全国水电装机容量的64.6%。三、巴西水电装机容量居世界第四位。巴西1991年水电装机容量为4608万千瓦,水电发电量2490亿千瓦时,占全国总发电量的比重达95%。巴西的水电装机容量居世界第四位,仅次于美国、前苏联和加拿大;水电年发电量已超过前苏联,居世界第三位。巴西的理论水能蕴藏量为30204亿千瓦时/年;经济可开发水能资源11169亿千瓦时/年,仅次于我国,居世界第二位。1991年已建水电站对其经济可开发水能资源的利用率为22.3%。巴西首先开发离经济发达地区较近的巴拉那河流域,30年来在各支流和干流上游已陆续建成10万千瓦以上大型水电站30座,共计装机容量2669万千瓦。最近在巴拉那河中游与巴拉圭边境共建的伊泰普水电站,装机容量1260万千瓦,年发电量710亿千瓦时,是当今世界上已建的最大水电站,总投资达234亿美元,为开工时估价31亿美元的7.5倍。巴西的水电建设,很注意水库蓄洪补枯,如巴拉那河上游干支流已建水库的调节库容有1075亿立方米,加上伊泰普水库的190亿立方米,共计1265亿立方米,相当于年径流量2860亿立方米的44%,调节性能很好。四、挪威能源消费中水电占一半。挪威的终端能源消费中,水电占50%,石油产品占37%,煤和焦炭占8%,木材和造纸废物占5%。挪威现有电力装机容量2700万千瓦,其中99%是水电,仅有1%即27万千瓦的工厂备用火电机组。年发电量中99.6%为水电。挪威按人口平均年用电量达24700千瓦时,比美国还高出一倍多。挪威水电建设的最大特点,是在高山上利用原有湖泊或建高坝形成大水库,利用它调节洪枯径流,在其下游建高水头水电站。水库调蓄电能达768亿千瓦时,相当于全国年发电量1083亿千瓦时的71%,可以进行很好的多年调节,在水电比重高达99%情况下,不论丰枯水季都能满足用户用电要求。另一特点是在山区所建水电站,地下厂房很多。全国大小水电站约600座中,有200座的发电厂房设在地下,开挖隧洞总长度达3000公里。工程较艰巨,但较经济,工期较短。挪威的水电站,国有的占29.1%,市镇所有的占51.5%,工厂自备和私营的占19.4%。所有水电站都自愿联入地区电网。纵贯全国南北长达1700公里的全国电网,将中部的国有水电站与南方和北方的地区电网相连,进行统一调度。国家电力局所建输电设施占90%。挪威的电网还与邻国相联,相互补充,出入相抵输出较多。挪威水能资源的理论蕴藏量为5000亿千瓦时/年,技术可开发1700亿千瓦时/年,经济可开发1250亿千瓦时/年。现已开发1083亿千瓦时/年,还有一定资源可供开发。目前主要对早期所建老水电站进行现代化改造,扩建或重建。五、日本有78%水能资源得到利用。1991年底,日本水电装机容量3912万千瓦,其中常规水电2091万千瓦,抽水蓄能1821万千瓦。常规水电年发电量892亿千瓦时,占经济可开发水能资源1143亿千瓦时的78%。日本所建大型水电站(单站装机大于25万千瓦)包括常规水电和抽水蓄能电站共30座,合计装机1878万千瓦,占全部水电装机的48%。其中已建大型抽水蓄能电站24座,共装机1684万千瓦,最大的是新高濑川电站,为128万千瓦。日本所建中小型水电站比较多,共有1700多座,合计2034万千瓦,占水电装机的52%。正在建设的常规水电站55座,共175万千瓦,都是中小型水电站。在建的抽水蓄能电站8座,共548万千瓦。调查研究中的抽水蓄能电站有44处,共可装机3.29亿千瓦。当前准备兴建的葛野川抽水蓄能电站,利用水头714米,安装4台单机容量为40万千瓦的可逆式抽水蓄能机组,将是日本水头最高、装机容量和单机容量最大的水电站。计划到2000年水电装机将达4450万千瓦,其中常规水电2150万千瓦,抽水蓄能2300万千瓦,2010年的水电装机拟达5170万千瓦,其中常规水电2500万千瓦,抽水蓄能2670万千瓦。计划中两个10年的水电装机平均年增长率分别为1.6%和1.5%。独联体水电建设近况。1992年底,独联体共有水电装机容量6436万千瓦,其中俄罗斯4257万千瓦。1992年独联体水电年发电量共2254亿千瓦时,其中俄罗斯1670亿千瓦时,塔吉克140亿千瓦时,乌克兰110亿千瓦时,格鲁吉亚100亿千瓦时,其他诸共和国分别为几十亿千瓦时或几亿千瓦时。俄罗斯联邦、乌克兰共和国、立陶宛共和国、塔吉克共和国、吉尔吉斯共和国、格鲁吉亚共和国等均有一些规模不等的在建工程。六、中国水能资源居世界第一位。我国的水能资源理论蕴藏量有6.78亿千瓦,年发电量5.92万亿千瓦时,居世界第一位,有美好的开发前景。到1991年,我国已开发水电装机容量3788万千瓦,年发电量1248亿千瓦时,占经济可开发水电发电量的9.9%。预计,2000年我国水电总装机容量可达9000万千瓦;2000~2020年再增加9000万千瓦,到2020年累计达1.8亿千瓦;2020~2050年再开发1.1亿千瓦,将我国经济可开发水能资源全部开发出来,达到2.9亿千瓦。到那时,我国的水电发电量将雄居世界首位。我国水电开发采取大、中、小并举的方针,重点开发黄河上游、长江中下游和红水河、澜沧江等。目前在建的规模达100万千瓦以上的有二滩、岩滩、李家峡、澋湾、五强溪等10座水电站,总规模达2000万千瓦以上。1993年在国家压缩基建规模对投资结构进行宏观调控的情况下,天荒坪抽水蓄能电站(180万千瓦)和松江河梯级电站(51万千瓦)列为正式开工项目。1994年电力部建议新开工的项目有8项(在广西红水河的龙滩、百龙滩,云南澜沧江,广东广州,吉林松花江丰满,湖北清江高坝洲,甘肃黄河小峡,安徽淠河响洪旬),共计装机容量778.4万千瓦。此外,还有4项(在湖南沅江凌津滩,福建汀江棉花滩,贵州乌江大冲河洪家渡,四川大渡河支流南桠河)涉及外资(亚洲开发银行)的工程项目。青海省还采取多方集资,走股份化道路来开发黄河上游水电资源。日前,“尼直康”有限责任公司在西宁召开发起人会议。将由国家能源投资公司、中国华水水电开发总公司黄河水电工程公司、西北电力集团、西北勘测设计院和青海省共同投资23.3亿元,建设“尼直康”三座(即尼那、直岗拉卡、康扬)中型水电站就是一例。合计装机容量47万千瓦,年发电量20.5亿千瓦时。黄河上游龙(羊峡)、青(铜峡)段,据西北勘测设计研究院1993年补充规划梯级水电站24~25座,总装机容量1608万千瓦,年发电量588亿千瓦时。其中已建龙羊峡(128万千瓦)、刘家峡(116万千瓦,拟增容至130万千瓦)、盐锅峡(39.6万千瓦)、八盘峡(18万千瓦,拟扩建至25.2万千瓦)、青铜峡(27.2万千瓦)等5级;在建李家峡(200万千瓦,计划1995年开始发电)。最近,国家能源投资公司,甘肃省与加拿大合作开发大峡(32.5万千瓦)、小峡(23万千瓦)、乌金峡(15万千瓦),再加上青海拟集资开发“尼直康”3座,合计12座水电站,总装机容量达667万千瓦,年发电量267亿千瓦时,占黄河上游梯级规划发电能力的41%和45%。黄河上游洪枯调节良好的梯级水电站,在西北电网中发挥了重大作用。长江三峡工程是跨世纪的特大型水利、水电工程,具有防洪、发电、航运、供水及发展旅游的综合效益。三峡工程共安装单机容量68万千瓦的机组26台,总装机容量1768万千瓦,年发电量840亿千瓦时,相当于6.5个已建成的葛洲坝水电站(271.5万千瓦),或相当于每年节省5000万吨火电用煤,还可节省1600公里运输线路。与相同的燃煤火电站相比,每年可少排放1亿多吨二氧化碳、200万吨二氧化硫、37万吨氮氧化物,以及大量废渣、废水。三峡工程将于2008年全部建成,届时将分别向华东和华中输送600万~800万千瓦电力,它对于这两个地区能源平衡将起到重要作用。这两个地区是我国经济发达地区,随着经济的高速发展,对电力要求也迅速增长,三峡工程的建成在开发长江经济带中将起巨大的推动作用。三峡水电工程建成之后,华东电网与华中电网实行联合运行,有巨大的错峰效益。因为华东、华中两电网最大负荷出现有季节的差异,华东电网的最大负荷出现在每年的6~8月,而华中电网的最大负荷出现在11~12月。华东、华中两电网能源结构不同,华中电网水电比重大,汛期有大量季节性电能,联网后可将部分季节性电能转化为华东电网夏季季节性负荷所需的电力,提高华东电网火电机组检修备用容量。将来全国大电网形成后,可实现跨流域水电丰枯季节互补。统一电网有着巨大的经济效益和社会效益。