1激光选区烧结成形材料的研究和应用现状曾锡琴1朱小蓉21.江苏电大武进学院,江苏常州,213161;2.江苏工业学院机械系,江苏常州,213016[摘要]介绍了激光快速成形的原理及SLS对材料性能的要求,概括了激光选区烧结成形技术中各种材料的研究和应用现状,分析了SLS技术产业化存在的问题及可能解决的途径。[关键词]选择性激光烧结,材料,研究与应用ResearchandApplicationPresentConditionontheMaterialsofSelectiveLaserSinteringZENGXi-qin1ZHUXiao-rong1.WujinTVUniversity,JiangsuProvince,China;2.DepartmentofMechanicalEngineering,Jiangsupolytechniqueuniversity,Changzhou213016,China)Abstract:Inthisarticletheprincipleoftheselectivelasersintering,thesituationoftheresearchandapplicationonmaterialbySLSaresummarized.Theexistentproblemsandsolvingmethodsarediscussed.Keywords:selectivelasersintering,material,researchandapplication0.引言SLS(selectivelasersintering)作为快速原形制造技术的重要分支之一,是目前发展最快和应用最广的技术之一[1]。它和SLA、LOM构成激光快速成形技术的核心。与其它快速成形技术相比,SLS以选材广泛、无需设计和制造复杂支撑并且可直接生产注塑模、电火花加工电极以及可快速获得金属零件等功能性零件而受到了越来越广泛的重视。1.激光选区烧结成形技术SLS所用的激光有两种:CO2激光器和Nd:YAG激光器。大部分金属对CO2激光器的反射率比对Nd:YAG激光器的反射率大,不利于金属粉末对激光能量的吸收。在SLS系统中,激光束对任何粉末颗粒的作用时间都非常短,大约为几毫秒到几十毫秒,所以目前SLS技术大多采用液相烧结[2],其材料一般由两种熔点相差明显的成分组成,高熔点成分称为结构材料,低熔点成分称为粘结剂。因此,从原则上讲所有受热能相互粘结的粉末材料或表面覆有热固(塑)性粘结剂的粉末都能用作SLS材料。2.国内外主要SLS成形材料及其应用现状目前,SLS材料主要有塑料粉、蜡粉、尼龙、金属或陶瓷的包衣粉(或与聚合物的混合物)等。2.1有机材料从理论上说,任何热塑性粉末均可采用SLS技术成形为任何复杂形状的制件。目前常见的有:(1)蜡粉,传统的熔模精铸用蜡(烷烃蜡、脂肪酸蜡等),蜡模强度较低,难以满足精细、复杂结构的铸件的要求,且成形精度差,所以DTM研制了低熔点高分子蜡的复合材料;华北工学院采用化学合成法,开发了以氧化聚乙烯为主要成分的复合精铸蜡粉(PCP1),其成形件经过简单的后处理(清粉、涂液)即可达到精铸蜡模的要求[1]。(2)聚苯乙烯(PS)聚苯乙烯受热后可熔化、粘结,冷却后可以固化成形,而且该材料吸湿率小,收缩率也较小,其成形件浸树脂后可进一步提高强度,主要性能指标可达拉伸强度≥15Mpa、弯曲强度≥33Mpa、冲击强度≥3Mpa,可作为原形件或功能件使用;也可用做消失模铸造用母模,生产金属铸件,但其缺点是必须采用高温燃烧法(300℃)进行脱模处理,造成环境污染。因此,对于PS粉原料,针对铸造消失2模的使用要求一般加入助分解助剂。国内如华中科大、北京隆源、北京航空航天大学及华北工学院均有研究,研究包括成形件致密度、成形腔温度场等有限元模拟及实际测量等,是目前国内使用最为广泛的一种成形材料之一。(3)工程塑料(ABS)ABS与聚苯乙烯同属热塑性材料,其烧结成形性能与聚苯乙烯相近,只是烧结温度高20℃左右,但ABS成形件强度较高,所以在国内外广泛被用于快速制造原形及功能件。(4)聚碳酸酯(PC)从文献资料看,对聚碳酸酯烧结成形的研究比较成熟,其成形件强度高、表面质量好,且脱模容易,主要用于制造熔模铸造航空、医疗、汽车工业的金属零件用的消失模以及制作各行业通用的塑料模,如DTM公司的DTMPolycarbanate。但聚碳酸酯价格比聚苯乙烯昂贵。国内北航对聚碳酸酯(PC)进行了研究,探讨其烧结工艺过程以提高成形件精度[3]。(5)尼龙(PA)尼龙材料用SLS方法可被制成功能零件。目前商业化广泛使用的有四种成分的材料[4]:⑴标准的DTM尼龙(StandardNylon),能被用来制作具有良好耐热性能和耐蚀性的模形;⑵DTM精细尼龙(DuraFormGF),不仅具有与DTM尼龙相同的性能,还提高了制件的尺寸精度、降低表面粗糙度,能制造微小特征,适合概念形和测试形制造,但价格高达188美元/kg;⑶DTM医用级的精细尼龙(FineNylonMedicalGrade),能通过高温蒸压被蒸汽消毒5个循环;⑷原形复合材料(ProtoFormTMComposite),是DuraFormGF经玻璃强化的一种改性材料,与未被强化的DTM尼龙相比,它具有更好的加工性能,表面粗糙度Ra=4um~5um,尺寸公差0.25mm,同时提高了耐热性和耐腐蚀性。同时,EOS公司发展了一种新的尼龙粉末材料(PA3200GF,有点类似于DTM的DuraFormGF),这种材料可以产生高精度和很好的表面光洁度[5]。国内,华北工学院在其自行研制的变长线扫描快速成形机上进行了主要成分为尼龙11(PA11)和有机玻璃(PMMA)的烧结试验,并在此基础上对有机材料激光烧结成形性能的影响因素进行了分析,同时建立了其烧结温度场的数学模形[6]。但总的来说其SLS成形件强度不高限制了实际应用。3.2金属粉末采用金属粉末进行快速成形是激光快速成形由原形制造到快速直接制造的趋势。常用的金属粉末有3种:⑴金属粉末和有机粘结剂的混合体。其混合方法包括两种:①利用有机树脂包覆金属材料制得的覆膜金属粉末,这种粉末的制备工艺复杂,但烧结性能好,且所含有的树脂比例较小,更有利于后处理;②金属与有机树脂的混合粉末,制备较简单,但烧结性能较差。在包衣粉末或混合粉末中,粘结剂受激光作用迅速变为熔融状态,冷却后将金属基体粉末粘结在一起,烧结时通常需要保护气。其成形件的密度和强度较低,如作为功能件使用,需进行后续处理,包括烧失粘结剂、高温焙烧、金属熔渗(如渗铜)等工序,即可制得用于塑料零件生产的金属模具或放电加工用电极。美国Harrisl、Marcus等人对60Cu-40PMMA(有机玻璃)混合粉末进行了烧结,经后处理工艺,相对密度在84%~96%之间。DTM公司已经商业化的金属粉末产品有[4]①RapidSteel1.0,其材料成分为1080碳钢金属粉末+聚合物材料,平均粒度为55um,聚合物均匀覆在粉粒的表面,厚度为5um,激光功率30W,成形坯件的密度是钢密度的55%,强度可达2.8Mpa。所渗金属可以是纯铜,也可以是青铜。这种材料主要用来制造注塑模。②在RapidSteel1.0基础上发展了RapidSteel2.0,其烧结成形件完全密实,达到铝合金的强度和硬度,能进行机加工、焊接、表面处理及热处理,可作为塑料件的注塑成形模具,注塑模的寿命已达10万件/副,也可以用来制造用于Al、Mg、Zn等有色金属零件压铸模,压铸模的寿命只有200~500件/副。③CopperPolyamide机体材料为铜粉,粘结剂为聚酰胺(polyamide),其特点是成形后不需二次烧结,只需渗入低粘度耐高温的高分子材料(如环氧树脂等),成形件可用于常用塑料的注塑成形,但模具的寿命只有100~400件/副。南京航空航天大学在RAP-Ⅱ设备上对粉末材料[7]:铁粉(79%或钨粉)+聚酯粘结剂(21%)进行烧结,经渗铜处理得到EDM电极,并进行了EDM放电试验,实验表明,当采用的放电加工参数合理时,电极的体积损耗可降到4%或更低,接近于纯铜。华北工学院对覆膜金属粉(CMP1——成分为覆膜1Cr18Ni9Ti粉末、覆膜Cu基合金粉末)进行烧结性能试验,烧结件变形很小,成形尺寸精度±0.15mm。吉林工业大学用有机树脂包覆的铁基合金398Fe2Ni进行了烧结研究。⑵两种金属粉末的混合体,其中一种熔点较低起粘结剂的作用,G.Scherer研究了Cu-Ni,WC-Co-Ni等复合材料的SLS直接成形,结果发现,高熔点材料的烧结成形类似于液相烧结,激光能量将复合组分中低熔点的成分熔化,形成的液相将固相浸润,冷却后低熔点液相凝固将高熔点组分粘结起来。所以,多元金属粉末中的粘结相大多采用的是金属Sn等低熔点材料,如Austin大学的Agarwda等人选用Cu-Sn,Ni-Sn或青铜-锡粉复合粉末进行SLS成形研究,并成功地制造出金属零件。比利时的Schueren等人选用Fe-Sn,Fe-Cu混合粉末,Bourell等人选用Cu-(70Pb-30Sn)粉末材料进行了烧结试验,均取得了满意的结果。但是,低熔点金属材料的强度也较低,使得制成的烧结件强度也低,性能很差。为了提高烧结件的性能,必须提高多元金属粉末中低熔点金属的熔点,最好用熔点接近或超过1000℃的金属材料作为粘接剂,用更高熔点金属作为合金的基体,高熔点金属原子间结合力强,高温下不易产生塑性变形,即抗蠕变能力强,才能得到机械性能、尺寸精度、表面质量、金属密度等满足使用要求的金属零件或模具,因此高熔点金属粉末激光直接烧结成形的研究倍受人们的关注。Kruth等进行了Fe-Cu合金粉末的成功烧结[8]。南航张剑峰等采用大功率激光器初步探索Ni基合金16CR4B4SI(粒度150目)、混铜粉(FTD4,粒度200目)及其混合粉末、以及Ni基F105(8Cr、4B、4Si50WC)等金属粉末的直接激光烧结机理,建立了数学模形,在实际烧结过程中会出现粉末飞溅、形成球体、烧结成线等不同现象[9]。中国科学院金属所和西北工业大学等单位正致力于高熔点金属的激光快速成形。⑶单一的金属粉末。对单元系烧结,特别是高熔点的金属,在较短的时间内需要达到熔融温度,需要很大功率的激光器。直接金属烧结成形存在的最大问题是因组织结构多孔导致制件密度低、机械性能差。G.Zong等研究了带气体保护装置的铁粉直接烧结成形,成形后的密度可达到48%,要进一步提高其性能,还需进行致密化等其它处理[10]。Haase于1989年对铁粉进行了研究,烧结的零件经热等精压处理后,相对密度达90%以上。近年来,Austin大学也对单一金属粉末激光烧结成形进行了研究[8],成功地制造了用于F1战斗机和AIM-9导弹的INCONEL625超合金和Ti-6Al-4合金的金属零件。美国航空材料公司已研究开发成功先进钛合金构件的激光快速成形。大连理工大学在进行314奥氏体不锈钢粉末直接烧结时,采用大小两种球形颗粒按一定比例混合,在烧结过程中小颗粒能排列到大颗粒之间的间隙中,从而降低孔隙率,提高制件密度。2.3陶瓷粉末选择性激光烧结陶瓷粉末是在陶瓷粉末中加入粘结剂,其覆膜粉末制备工艺与覆膜金属粉末类似,被包覆的陶瓷可以是Al2O3、、TiC和SiC等,粘结剂的种类很多,有金属粘结剂和塑料粘结剂(包括树脂、聚乙烯蜡、有机玻璃等),也可以使用无机粘结剂。如邓琦林等分别用Al2O3(熔点为2050℃)为结构材料,以PMMA和聚乙烯蜡、NH4H2PO4(熔点为190℃)和Al作为粘结剂,按一定的比例混合均匀烧结,经二次烧结后处理工艺后获得铸造用陶瓷形壳,用该陶瓷形壳进行浇注即获得制作的金属零件。华北工学院开发的覆膜陶瓷粉末(CCP1——聚乙烯蜡、Al2O3、ZrO2)已开展了加工服务。覆膜砂采用热固性树脂如酚醛树脂加入锆砂、石英砂的方法制得。利用激光烧结方法,制得原形可直接用做铸造用砂形(芯)来制造金属零件,其中锆砂具有更好的铸造性能,尤其