五邑大学本科毕业设计I摘要快速路交通量具有复杂性和不确定性,对交通量的准确预测是实现智能交通诱导和控制的基础。智能交通能解决道路交通拥堵,减少交通事故,减少大气污染等现实难题,是我国道路交通发展的方向。充分考虑到快速路交通量所具有的非线性,时变性和随机性,提出将支持向量机回归算法应用到快速路小时交通量预测中。根据我国交通情况,利用广州某快速路小时交通量数据,进行快速路小时交通量预测。仿真研究结果表明,支持向量机泛化能力好,学习速度快,在快速路小时交通量预测中起着重要作用。关键词:小时交通量;交通量预测;支持向量机回归;仿真研究五邑大学本科毕业设计IIAbstractExpresswaytrafficflowhasthecomplexityanduncertainty,theaccuratetrafficflowforecastingisthefoundationtorealizeintelligenttrafficguidancetocontrol.Intelligenttransportationcansolvetrafficcongestion,reducetrafficaccidents,reducetherealisticproblemssuchasairpollution,isthedirectionofourcountryroadtrafficdevelopment.Theexpresswaytrafficflowisnonlinear,time-varyingandrandomness,thesupportvectormachine(SVM)regressionalgorithmwasappliedtoexpresswayhoursintrafficflowprediction.Accordingtothetrafficsituationinourcountry,usetheoneofGuangzhou’sexpresswaystrafficflowdatatoforecastanhourexpresswaytrafficflow.Simulationresultsshowthatthegeneralizationandlearningabilityofsupportvectormachine(SVM)iswell,hoursinexpresswaytrafficflowforecastingplaysanimportantrole.Keywords:hourlytrafficvolume;trafficflowforecasting;supportvectormachineregression;simulationresearch五邑大学本科毕业设计III目录摘要...............................................................IAbstract...........................................................II第1章绪论.........................................................11.1课题背景....................................................11.2研究目的和意义...............................................21.3国内外文献综述..............................................21.4本论文主要内容..............................................3第2章支持向量机理论...............................................52.1支持向量机概述..............................................52.2支持向量机回归及其类型......................................92.3本章小结....................................................9第3章交通流参数及预测方法........................................103.1交通流基本参数.............................................103.2交通流量数据的采集和特性...................................103.3交通流预测的方法...........................................113.3.1交通状态预测概述......................................113.3.2交通量短时预测方法....................................123.4本章小结...................................................13第4章基于支持向量机的小时交通流预测..............................144.1概述.......................................................144.2支持向量机回归的交通信息预测...............................144.3支持向量机的交通信息预测的具体步骤.........................154.4本章小结...................................................16第5章仿真研究....................................................175.1交通流量预测...............................................175.2本章小结...................................................30结论...............................................................31参考文献...........................................................32致谢...............................................................33五邑大学本科毕业设计1第1章绪论1.1课题背景城市交通系统是城市经济社会活动的基础设施,城市化的发展和汽车数量的增加导致交通道路通行压力的增加。城市交通的供需矛盾越来越显现,至此引发了日趋严重的交通道路堵塞,严重的环境污染,交通事故频繁发生等问题,造成重大的经济损失。交通堵塞随即引发交通通行效率降低和能耗增加的问题。据研究数据表明,汽车时速从40公里降到10公里时,能源消耗量加倍增大,还严重降低了交通通行效率,同时汽车排放的氮氧化物、一氧化碳等气体加重了环境负荷,造成严重的大气污染和空气质量下降,甚至带来连续数月的雾霾天气。快速路作为现代化交通的标志设施,具有高效、快速、舒适和安全等优势,对促进社会经济发展起到关键的作用。快速路减少了车辆之间的冲突,减少了交通堵塞的现象,提高了道路通行的效率。但是随着社会经济的发展,城市化进程的加快,快速路的交通流量也迅速增加。快速路逐渐出现了严重的交通拥堵的现象,导致快速路通行效率降低,环境污染日益加重等问题,快速路的优势似乎慢慢消退,这种现象影响了人们生活水平的提高和各项事业的现代化进程。随着机动车数量不断地增加,交通流量接近甚至超过道路的通行能力,对于已经建好的城市快速路显然是不能完全容纳的。为了解决机动车与快速路容纳能力之间的矛盾,除了通过行政手段改变交通的运行规律以外,最直接的方法就是修建更多的快速路,以增加道路的容纳水平。但是这需要巨额资金的支持,同时又要占用更多的空间。因此,这种方法并不能从根本上解决上述交通矛盾,那么研究和发展智能交通系统是必经之路。在不断扩建和完善的快速路交通网络的基础上,提高快速路交通网络的现代化管理水平,改造现有的道路运输通行系统,从而提高快速路的通行能力和服务质量。交通控制与诱导是智能交通系统的重要组成部分之一,交通状态的小时交通流量预测是交通控制与诱导的基础。目前的预测方法主要有统计回归法、状态估计法、神经网络法、时间序列法、动态交通分配及交通模拟法等,尤其以神经网络为代表的这种新型人工智能方法。快速路道路交通系统是非线性、时变、不稳定、带有随机性的系统,受到的影响因素很多。神经网络具有较强的自适应能力,可以根据历史数据学习训练,但是神经网络会出现求得局部极小解的问题和过学习问题。支持向量机以结构风险最小化为目标,其具有结构简单、全局最优、小样本推广能力强的优势,能很好地解决非线性、高维数、小样本和局部极小点等问题,克服了神经网络的缺陷,成为机器学习界新的研究热点,已有将其应用于交通流量时间序列预测中。本课题针对快速路交通流量非线性时变的特性,应用历史交通流量数据,提出基于支持向量机的快速路小时交通量预测方法,预测未来交通流量数据,然后根据预测五邑大学本科毕业设计2结果进行科学的交通诱导、控制和管理,从而解决快速路交通堵或通行效率逐渐降低的问题。1.2研究目的和意义小时交通流量预测是智能交通系统的基础组成部分,智能交通系统能提高交通运输通行效率,改善交通通行环境,减少自然环境的污染,并最终实现人、车、路的完美配合。利用现代技术获取快速路的小时交通流量,据此进行下一时段的交通流量预测,为下一时段的交通流控制和诱导做好基础。准确的预测结果可以为出行者提供最佳的交通出行路线,科学合理地引导交通出行,减少出行者的时间浪费,从而优化道路资源配置,最大限度地发挥快速路的优势,避免形成交通拥堵,实现快速路交通路网畅通无阻的目的。因此,对交通流量准确、及时的预测对于实现交通流诱导与控制十分关键。目前对小时交通流量预测的方法接近30种,基本可划分为两类:其一是基于确定的数学模型的交通信息预测方法,其二是基于知识的智能模型的交通信息预测方法。数学模型预测方法以数学模型理论为基础,一般情况下能取得较好的结果,但是模型比较简单,不能克服随机的干扰因素对交通流量的影响,就会容易造成很大的误差。后者以BP神经网络预测模型为代表,BP神经网络能在有错误数据的情况下利用结构本身的特性做出准确的预测,但是利用BP神经网络过分强调学习而出现过拟合现象,使模型的泛化能力得不到充分发挥,同时还会出现,欠学习,局部极小点问题。支持向量机回归预测方法采用结构风险最小化,可以避免神经网络的一些缺陷,在解决小样本数据、非线性问题以及高维模式识别方面有很多优势。本文提出基于支持向量机回归预测快速路小时交通流量的方法,利用采集到的快速路交通流量实时数据,预测快速路未来的小时交通流量,解决快速路拥堵和通行效率不高的问题。本课题研究具有重要的实际意义和社会意义,快速路小时交通量预测对城市快速路的发展,避免交通事故频繁发生和防止交通堵塞现象,合理分配交通资源配置和减少自然资源浪费和时间浪费有着深远的影响,这可使城市快速路健康快速发展,为国家的经济高速发展和人们生活水平的提高贡献更大的力量。1.3国内外文献综述由于交通流量变化发展迅速,并且随机性和不确定性强,规律不明显,导致快速路交通拥堵问题日益明显,智能交通系统越来越受到专家学者们的重视,而交通流量预测对交通控制和诱导起着至关重要的作用。所以,近年来专家学者们开始着力于研究小时交通流量的预测,并取得了重大的成果。文献1主要介绍了道路网短时交通流量预测的基本