海洋环境用全固态参比电极的性能1海洋环境用全固态参比电极的性能完成日期:指导教师签字:答辩小组成员签字:海洋环境用全固态参比电极的性能2深海用全固态参比电极的性能摘要在海洋石油开发中,海洋钢铁构筑物如平台、海底管道、码头、舰船的阴极保护系统中,需要对保护电位、保护电流密度、阳极电流和阳极电压等参数进行测量。这就必须采用具有长期稳定性良好,精度更高的参比电极,才能真实反应金属结构的电位。海水中温度、溶解氧、压力对金属电极的影响以及电极本身的溶解度变化造成的电位不稳定,都对参比电极提出了更高的要求。目前浅海工程所使用的是由Ag/AgCl和Zn构成的的复合参比电极,Ag/AgCl能够防止微生物和海生物的附着,但是随着在海洋环境中使用时间的增加,由于AgCl组分的转变造成电位容易发生飘移,稳定性不是太好。Ag/AgX和Zn复合参比电极,除了具备防止微生物和海生物的附着这个特点,同时克服了上述的参比电极电位不稳定现象。本文采用的是粉末压片法制备的银/卤化银固溶体参比电极以及纯度为99.99%的锌电极。通过测试复合参比电极不同温度、溶解氧、pH下的电势,并分析数据变化规律,结果表明电极的稳定性良好:Ag/AgX电极电位在-11.06mV~-3.83mV(vs.25℃.sce)偏差不超过±1.0mv,高纯Zn电极的电位基本在-1.03±0.012V(vs.25℃.sce),偏差为±4mV~±15mV;温度响应特性良好:Ag/AgX电极温度系数为0.38042mv/℃,高纯Zn电极温度系数为-1.12mv/℃;溶解氧对电极的影响也很小:在模拟深海2~3mg·l-1溶氧量时(T=23.5℃),Zn的电位值为-1.0383V,Ag/AgX的电位值为-4.40262mV,与海水表面溶氧量8mg·l-1时的电位对比,偏差分别为0.042675V,0.30238mV;电位受pH的影响几乎可以忽略:在pH=7.5~8.5之间时,Zn的电位稳定在-1.0462±0.0005V,Ag/AgX的电位稳定在-3.51±0.07mV,漂移量都十分小,与电位-温度拟合方程得到的结果对比,偏差分别为:0.008875V,0.07238mV,偏差都很小。因此,Ag/AgX-Zn复合参比电极具备良好的稳定性和精确性,能够适应深海的环境要求。关键词:深海,银/卤化银-锌复合电极,电势,全固态参比电极海洋环境用全固态参比电极的性能3Theperformanceofallsolid-statereferenceelectrodeinmarineABSTRACTIntheindustryofmarineexploration,subseametalstructuressuchasplatforms,pipelines,dock,shipofcathodicprotectionsystems,massuringprotectedpotential,protectedcurrentdensity,anodecurrentandanodevoltageandotherparametersisneeded.Itisnecessarytohaveareferenceelectrodethatisexactandstable,whichcandisplaytherealpotentialofmetalstructures.Duetothechangesoftemperature,dissolvedoxygen,pressure,pHofmarineenvironment,andtheinstabilitycausedbysolubilityoftheelectrodeitself,itneedhigherstabilereferenceelectrode.Atpresent,Ag/AgClandZnreferenceelectrodeisofenusedinelectricalchemistrymeasurement,whichisregardedasthebestreferenceelectrode.Ag/AgClcanpreventtheelectrodefromattachingofmicrobialadhesionandmarinelife,butinthecomplexmarineenvironment,changesinthecompositionofAgClwillcausesomedriftofthepotential,thestabilityisnotsogood.Ag/AgXandZncompositedreferenceelectrode,itnotonlypreventmicrobialandmarinelifefromattachingtotheelectrode,butalsoovercometheaboveinstability.Theelectrodeusedinthisarticle―Ag/AgXandZn(with99.99%purity)aremadedbyusingPressPowerMethod.Bymessuringthepotencialoftheelectrodeindifferenttempratures,dissolvedoxygenandpHofmarineenvironment,weanalyzetherulesofthesedatas.Theresultsshowsthattheelectrodehadgoodstability:thedraftofthepotencialisminimal:ThepotencialofAg/AgXelectrodeis-11.06mV~-3.83mV(vs.25℃.sce),thedraftisnomore±1.0mv,whentheZnelectrodeis-1.03±0.012V(vs.25℃.sce)witha±4mV~±15mVdraft;Theresponsecharacteroftemperatureisgood:theAg/AgXelectrode’sTriticalis0.38042mv/℃,andtheZnis-1.12mv/℃;theoxygeneffectsminimally:2~3mg·l-1[O2](T=23.5℃),thepotencialofZnelectrodeis-1.0383V,whichtheAg/AgXis-4.40262mV,comparingtheseresultswiththepotencialoftheseafacewhoseoxygenis8mg·l-1,theco-respondingdeclinationare0.042675Vand0.30238mV;ThepHeffectsminimally:whenthepHvarysfrom7.5to8.5,thepotencialofZnstabilizesat-1.0462±0.0005V,whichtheAg/AgXis-3.51±0.07mV,thedraftisminimal,comparingwiththeformulafromthestatisticleastsquarefittinganalysis,thedeclinationis0.008875Vand0.07238mV,bothareminimal.SotheAg/AgXandZnelectrodehaslongstabilityandexactity,whichcanadapttheenvironmentindeepmarine.Keywords:deepmarine,Ag/AgX-Zn,electrode,potencial,solid-statereferenceelectrode目录1、文献综述...................................................................................................................................11.1引言....................................................................................................................................11.2固态参比电极的国内外研究概况及发展趋势................................................................21.2.1参比电极概述........................................................................................................21.2.2固态参比电极........................................................................................................31.2.3影响参比电极性能的主要因素...................................................................................61.2.3.1温度的影响........................................................................................................61.2.3.2光线的影响.......................................................................................................61.2.3.3外界电解质浓度的影响....................................................................................61.2.3.4电极表面玷污的影响........................................................................................71.2.3.5其他因素对电极腐蚀的影响(以青岛海域为例)........................................71.2.4固态参比电极在海洋环境中的应用............................................................................81.3本论文研究目的及内容....................................................................................................92、实验过程...................................................................................................................................102.1实验试剂、仪器及设备.................................................................................................102.2电极的封装和加工....................................................................