湖北省恩施州2013年中考数学试题及答案(word版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

湖北省恩施州2013年中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分。在每小题给出的四个选项中,恰有一项是符合要求的。)1.(3分)的相反数是()A.B.﹣C.3D.﹣32.(3分)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记数法表示为(保留三位有效数字)()A.3.93×104B.3.94×104C.0.39×105D.394×1023.(3分)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°4.(3分)把x2y﹣2y2x+y3分解因式正确的是()A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)25.(3分)下列运算正确的是()A.x3•x2=x6B.3a2+2a2=5a2C.a(a﹣1)=a2﹣1D.(a3)4=a76.(3分)如图所示,下列四个选项中,不是正方体表面展开图的是()A.B.C.D.7.(3分)下列命题正确的是()A.若a>b,b<c,则a>cB.若a>b,则ac>bcC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b8.(3分)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()A.B.C.D.9.(3分)把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.B.C.D.10.(3分)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4B.1:3C.2:3D.1:211.(3分)如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:2009年恩施州各县市的固定资产投资情况表:(单位:亿元)单位恩施市利川县建始县巴东县宜恩县咸丰县来凤县鹤峰县州直投资额602824231416155下列结论不正确的是()A.2009年恩施州固定资产投资总额为200亿元B.2009年恩施州各单位固定资产投资额的中位数是16亿元C.2009年来凤县固定资产投资额为15亿元D.2009年固定资产投资扇形统计图中表示恩施市的扇形的圆心角为110°12.(3分)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为()A.B.C.π+1D.二、填空题(本大题共有4小题,每小题3分,共12分。不要求写出解答过程,请把答案直接填写在相应的位置上)13.(3分)25的平方根是±5.14.(3分)函数y=的自变量x的取值范围是x≤3且x≠﹣2.15.(3分)如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为6+π.16.(3分)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.三、解答题(本大题共有8个小题,共72分。解答时应写出文字说明、证明过程或演算步骤)17.(8分)先简化,再求值:,其中x=.18.(8分)如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.19.(8分)一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.20.(8分)如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.21.(8分)“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A处测得“香顶”N的仰角为45°,此时,他们刚好与“香底”D在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110,到达B处,测得“香顶”N的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:,).22.(10分)某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?23.(10分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.24.(12分)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.答案一、选择题1-6ABDCCC7-12DBBDDC二、填空题13、±514、x≤3且x≠﹣215、6+π16、171三、解答题17、解答:解:原式=÷=×=,当x=﹣2时,原式=﹣=﹣.18、解答:证明:如图,连接AC、BD,∵AD∥BC,AB=CD,∴AC=BD,∵E、F、G、H分别为边AB、BC、CD、DA的中点,∴在△ABC中,EF=AC,在△ADC中,GH=AC,∴EF=GH=AC,同理可得,HE=FG=BD,∴EF=FG=GH=HE,∴四边形EFGH为菱形.19、解答:解:(1)设袋子里2号球的个数为x个.根据题意得:=,解得:x=2,经检验:x=2是原分式方程的解,∴袋子里2号球的个数为2个.(2)列表得:3(1,3)(2,3)(2,3)(3,3)(3,3)﹣3(1,3)(2,3)(2,3)(3,3)﹣(3,3)3(1,3)(2,3)(2,3)﹣(3,3)(3,3)2(1,2)(2,2)﹣(3,2)(3,2)(3,2)2(1,2)﹣(2,2)(3,2)(3,2)(3,2)1﹣(2,1)(2,1)(3,1)(3,1)(3,1)122333∵共有30种等可能的结果,点A(x,y)在直线y=x下方的有11个,∴点A(x,y)在直线y=x下方的概率为:.20、解答:解:(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=6,∠CAB=60°,∴AD=3,CD=sin60°×AC=×6=3,∴点C坐标为(3,3),∵反比例函数的图象经过点C,∴k=9,∴反比例函数的解析式y=;(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标为6,即纵坐标y==,也是向上平移n=.21、解答:解:过点B作BF⊥DN于点F,过点B作BE⊥AD于点E,∵∠D=90°,∴四边形BEDF是矩形,∴BE=DF,BF=DE,在Rt△ABE中,AE=AB•cos30°=110×=55(米),BE=AB•sin30°=×110=55(米);设BF=x米,则AD=AE+ED=55+x(米),在Rt△BFN中,NF=BF•tan60°=x(米),∴DN=DF+NF=55+x(米),∵∠NAD=45°,∴AD=DN,即55+x=x+55,解得:x=55,∴DN=55+x≈150(米).答:“一炷香”的高度为150米.22、解答:解:设甲商品的进价为x元,乙商品的进价为y元,由题意,得,解得:.答:商品的进价为40元,乙商品的进价为80元;(2)设购进甲种商品m件,则购进乙种商品(100﹣m)件,由题意,得,解得:29≤m≤32∵m为整数,∴m=30,31,32,故有三种进货方案:方案1,甲种商品30件,乙商品70件,方案2,甲种商品31件,乙商品69件,方案3,甲种商品32件,乙商品68件,设利润为W元,由题意,得W=40m+50(100﹣m),=﹣10m+5000∵k=﹣10<0,∴W随m的增大而减小,∴m=30时,W最大=4700.23、解答:(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵AC弧=CE弧,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:在Rt△ADF中,∠DAF=30°,FA=FC=2,∴DF=AF=1,∴AD=DF=,∵AF∥CG,∴DA:AG=DF:CF,即:AG=1:2,∴AG=2.24、解答:解:(1)∵直线l:y=3x+3与x轴交于点A,与y轴交于点B,∴A(﹣1,0),B(0,3);∵把△AOB沿y轴翻折,点A落到点C,∴C(1,0).设直线BD的解析式为:y=kx+b,∵点B(0,3),D(3,0)在直线BD上,∴,解得k=﹣1,b=3,∴直线BD的解析式为:y=﹣x+3.设抛物线的解析式为:y=a(x﹣1)(x﹣3),∵点B(0,3)在抛物线上,∴3=a×(﹣1)×(﹣3),解得:a=1,∴抛物线的解析式为:y=(x﹣1)(x﹣3)=x2﹣4x+3.(2)抛物线的解析式为:y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1).直线BD:y=﹣x+3与抛物线的对称轴交于点M,令x=2,得y=1,∴M(2,1).设对称轴与x轴交点为点F,则CF=FD=MN=1,∴△MCD为等腰直角三角形.∵以点N、B、D为顶点的三角形与△MCD相似,∴△BND为等腰直角三角形.如答图1所示:(I)若BD为斜边,则易知此时直角顶点为原点O,∴N1(0,0);(II)若BD为直角边,B为直角顶点,则点N在x轴负半轴上,∵OB=OD=ON2=3,∴N2(﹣3,0);(III)若BD为直角边,D为直角顶点,则点N在y轴负半轴上,∵OB=OD=ON3=3,∴N3(0,﹣3).∴满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3).(3)假设存在点P,使S△PBD=6,设点P坐标为(m,n).(I)当点P位于直线BD上方时,如答图2所示:过点P作PE⊥x轴于点E,则PE=n,DE=m﹣3.S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE=(3+n)•m﹣×3×3﹣(m﹣3)•n=6,化简得:m+n=7①,∵P(m,n)在抛物线上,∴n=m2﹣4m+3,代入①式整理得:m2﹣3m﹣4=0,解得:m1=4,m2=﹣1,∴n1=3,n2=8,∴P1(4,3),P2(﹣1,8);(II)当点P位于直线BD下方时,如答图3所示:过点P作PE⊥y轴于点E,则PE=m,OE=﹣n,BE=3﹣n.S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)•(﹣n)+×3×3﹣(3﹣n)•m=6,化简得:m+n=﹣1②,∵P(m,n)在抛物线上,∴n=m2﹣4m+3,代入②式整理得:m2﹣3m+4=0,△=﹣7<0,此方程无解.故此时点P不存在.综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8).

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功