恒谦教育研究院西安恒谦教育科技股份有限公司第1页2014年湖北省鄂州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2014•鄂州)的绝对值的相反数是()A.B.C.2D.﹣2考点:绝对值;相反数.分析:根据绝对值的定义,这个数在数轴上的点到原点的距离,﹣的绝对值为;再根据相反数的定义,只有符号不同的两个数是互为相反数,的相反数为﹣;解答:解:﹣的绝对值为:|﹣|=,的相反数为:﹣,所以﹣的绝对值的相反数是为:﹣,故选:B.点评:此题考查了绝对值及相反数,关键明确:相反数的定义,只有符号不同的两个数是互为相反数;绝对值的定义,这个数在数轴上的点到原点的距离.2.(3分)(2014•鄂州)下列运算正确的是()A.(﹣2x2)3=﹣6x6B.(3a﹣b)2=9a2﹣b2C.x2•x3=x5D.x2+x3=x5考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用完全平方公式展开得到结果,即可做出判断;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式不能合并,错误.解答:解:A、原式=﹣8x6,错误;B、原式=9a2﹣6ab+b2,错误;C、原式=x5,正确;D、原式不能合并,错误,故选C点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.(3分)(2014•鄂州)如图,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()恒谦教育研究院西安恒谦教育科技股份有限公司第2页A.B.C.D.考点:简单组合体的三视图.分析:根据从左边看得到的图形是左视图,可得答案.解答:解:从左边看第一层是两个正方形,第二层是左边一个正方形,故选:D.点评:本题考查简单组合体的三视图,从左边看得到的图形是左视图.4.(3分)(2014•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°考点:平行线的性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.恒谦教育研究院西安恒谦教育科技股份有限公司第3页5.(3分)(2014•鄂州)点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为()A.2B.±2C.D.±考点:反比例函数图象上点的坐标特征;等边三角形的性质.分析:分两种情况:点A在第一象限或第二象限,从而得出点B的坐标,再根据△AOB为等边三角形,△AOB的边长为2,求出点A坐标,即可得出k值.解答:解:当点A在第一象限时,过A作AC⊥OB于C,如图1,∵OB=2,∴B点的坐标是(2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=,∴A点的坐标是(1,),∵点A为双曲线y=(k≠0)上一点,∴k=;当点A在第二象限时,过A作AC⊥OB于C,如图2,∵OB=2,∴B点的坐标是(﹣2,0);∵∠AOC=60°,AO=BO=2,∴OC=1,AC=2sin60°=,∴A点的坐标是(﹣1,),∵点A为双曲线y=(k≠0)上一点,∴k=﹣;故选D.点评:本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,是基础题难度不大.6.(3分)(2014•鄂州)圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°恒谦教育研究院西安恒谦教育科技股份有限公司第4页考点:圆锥的计算.专题:计算题.分析:设圆锥的侧面展开图的圆心角为n°,母线长为R,先根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到•2π•2•R=8π,解得R=4,然后根据弧长公式得到=2•2π,再解关于n的方程即可.解答:解:设圆锥的侧面展开图的圆心角为n°,母线长为R,根据题意得•2π•2•R=8π,解得R=4,所以=2•2π,解得n=180,即圆锥的侧面展开图的圆心角为180°.故选D.点评:本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.(3分)(2014•鄂州)在矩形ABCD中,AD=3AB,点G、H分别在AD、BC上,连BG、DH,且BG∥DH,当=()时,四边形BHDG为菱形.A.B.C.D.考点:菱形的判定.分析:首先根据菱形的性质可得BG=GD,然后设AB=x,则AD=3x,设AG=y,则GD=3x﹣y,BG=3x﹣y,再根据勾股定理可得y2+x2=(3x﹣y)2,再整理得=,然后可得y=x,再进一步可得的值.解答:解:∵四边形BGDH是菱形,∴BG=GD,设AB=x,则AD=3x,设AG=y,则GD=3x﹣y,BG=3x﹣y,∵在Rt△AGB中,AG2+AB2=GB2,∴y2+x2=(3x﹣y)2,整理得:=,y=x,恒谦教育研究院西安恒谦教育科技股份有限公司第5页∴===,故选:C.点评:此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形四边形相等.8.(3分)(2014•鄂州)近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x,可列方程为()A.2016(1﹣x)2=1500B.1500(1+x)2=2160C.1500(1﹣x)2=2160D.1500+1500(1+x)+1500(1+x)2=2160考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:本题是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该厂缴税的年平均增长率为x,那么根据题意可用x表示今年缴税数,然后根据已知可以得出方程.解答:解:如果设李师傅的月退休金从2011年到2013年年平均增长率为x,那么根据题意得今年缴税1500(1+x)2,列出方程为:1500(1+x)2=2160.故选B.点评:考查了由实际问题抽象出一元二次方程,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.9.(3分)(2014•鄂州)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn.下列结论正确的是()①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A7B7C7D7周长为;④四边形AnBnCnDn面积为.A.①②③B.②③④C.①③④D.①②③④考点:中点四边形.专题:规律型.分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项恒谦教育研究院西安恒谦教育科技股份有限公司第6页作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.解答:解:①连接A1C1,B1D1.∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;∴A1D1∥B1C1,A1B1∥C1D1,∴四边形A1B1C1D1是平行四边形;∵AC丄BD,∴四边形A1B1C1D1是矩形,∴B1D1=A1C1(矩形的两条对角线相等);∴A2D2=C2D2=C2B2=B2A2(中位线定理),∴四边形A2B2C2D2是菱形;∴四边形A3B3C3D3是矩形;∴根据中位线定理知,四边形A4B4C4D4是菱形;故①②正确;③根据中位线的性质易知,A7B7═A5B5A3B3=A1B1=AC,B7C7=B5C5=B3C3=B1C1=BD,∴四边形A7B7C7D7的周长是2×(a+b)=,故本选项正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,∴S四边形ABCD=ab÷2;由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形AnBnCnDn的面积是,故本选项错误;综上所述,②③①正确.故选A.点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.10.(3分)(2014•鄂州)已知抛物线的顶点为y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,yA),B(0,yB),C(﹣1,yC)在该抛物线上,当y0≥0恒成立时,的最小值为()恒谦教育研究院西安恒谦教育科技股份有限公司第7页A.1B.2C.4D.3考点:二次函数的性质.专题:计算题.分析:由0<2a<b得x0=﹣<﹣1,作AA1⊥x轴于点A1,CD⊥y轴于点D,连接BC,过点A作AF∥BC,交抛物线于点E(x1,yE),交x轴于点F(x2,0),则AA1=yA,OA1=1,BD=yB﹣yC,CD=1,易证得Rt△AFA1∽Rt△BCD,利用相似比得到=;过点E作EG⊥AA1于点G,易得△AEG∽△BCD,利用相似比得=,再把点A(1,yA)、B(0,yB)、C(﹣1,yC)、E(x1,yE)代入抛物线y=ax2+bx+c得yA=a+b+c,yB=c,yC=a﹣b+c,yE=ax12+bx1+c,所以=1﹣x1,整理得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),由于y0≥0恒成立,则有x2≤x1<﹣1,所以1﹣x2≥1﹣x1,即1﹣x2≥3,于是得到≥3,所以的最小值为3.解答:解:由0<2a<b,得x0=﹣<﹣1,由题意,如图,过点A作AA1⊥x轴于点A1,则AA1=yA,OA1=1,连接BC,过点C作CD⊥y轴于点D,则BD=yB﹣yC,CD=1,过点A作AF∥BC,交抛物线于点E(x1,yE),交x轴于点F(x2,0),则∠FAA1=∠CBD.于是Rt△AFA1∽Rt△BCD,所以=,即=,过点E作EG⊥AA1于点G,易得△AEG∽△BCD.有=,即=,∵点A(1,yA)、B(0,yB)、C(﹣1,yC)、E(x1,yE)在抛物线y=ax2+bx+c上,得yA=a+b+c,yB=c,yC=a﹣b+c,yE=ax12+bx1+c,∴=1﹣x1,化简,得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),∵y0≥0恒成立,根据题意,有x2≤x1<﹣1,则1﹣x2≥1﹣x1,即1﹣x2≥3.恒谦教育研究院西安恒谦教育科技股份有限公司第8页∴≥3,∴的最小值为3.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值