学而思网校年湖南省普通高中高二学业水平考试数学模拟试题命题:彭象华时间:120分钟.满分:100分,一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合BAxxBxxA则,084,51()A.62xxB.6xxC.2xxD.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球,抽到白球的概率为()A.25B.415C.35D.非以上答案3.已知D、E、F分别是ΔABC的边AB、BC、CA的中点,则下列等式中不正确的是()A、FADAFDB、0EFDEFDC、ECDADED、FDDEDA4.下列各式:①222(log3)2log3;②222log32log3;③222log6log3log18;④222log6log3log3.其中正确的有()A.1个B.2个C.3个D.4个5.下列三视图(依次为正视图、侧视图、俯视图)表示的几何体是()A.六棱柱B.六棱锥C.六棱台D.六边形6.若二次不等式062bxxa的解集是2|{xx或}3x,则ba()A.-1B.1C.-6D.6学校--------------------班级------------------学号------------------姓名-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------学而思网校已知cossin,20,81cossin则的值是()A.23B.41C.23D.258.下列函数中既是奇函数又在(0,2)上单调递增的是()A.yxB.2yxC.sinyxD.cosyx9.若,abcd且0cd,则下列不等式一定成立的是()A.acbcB.acbcC.adbdD.adbd10.函数2()fxxax的两零点间的距离为1,则a的值为()A.0B.1C.0或2D.1或1一、选择题:题号12345678910答案二、填空题:本大题共5小题,每小题4分,共20分.11.过(,1)Am与(1,)Bm的直线与过点(1,2),(5,0)PQ的直线垂直,则m.12.当,1,1x函数23xxf的值域为_________.13.防疫站对学生进行身体健康调查,红星中学共有学生1600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了20人,则该校的女生人数应是.14.过ABC所在平面外一点P,作PD,垂足为D,若PAPBPC,则D是ABC的心.(从外心,内心,重心,垂心中选一个)15.函数)2sin(sin3)(xxxf的单调递增区间__________________.学而思网校三、解答题:本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.16.(本小题6分)读下列程序,其中x为通话时间,y是收取的通话费用.(1)通话时间为6分钟,通话费用是多少?(2)写出程序中所表示的函数.INPUTxIF3xTHEN0.3yELSE0.30.1*(3)yxENDIFPRINTyEND17.(本小题8分)已知数列}{na的通项公式*26()nannN。(1)求2a,5a;(2)若2a,5a分别是等比数列{}nb的第1项和第2项,求数列{}nb的通项公式nb。学而思网校.(本小题8分)已知圆C的圆心在坐标原点,且过点M(1,3).(1)求圆C的方程;(2)已知点P是圆C上的动点,试求点P到直线40xy的距离的最小值;(3)若直线l与圆C相切于点M,求直线l的方程.19.(本小题8分)如图,四边形ABCD为正方形,PD⊥平面ABCD,E、F分别为BC和PC的中点.(1)求证:EF∥平面PBD;(2)如果AB=PD,求EF与平面ABCD所成角的正切值.第19题图学而思网校.(本小题10分)在ΔABC中,已知AB→·CA→=BA→·CB→=-1.(1)求证:ΔABC是等腰三角形;(2)求AB边的长;(3)若|AB→+AC→|=6,求ΔABC的面积.参考答案一、选择题:本大题共10小题,每小题4分,共40分.AADBAADCDD二、填空题:本大题共5小题,每小题4分,共20分.11.-212.5,3713.72014.外15.Zkkk,232,23三、解答题:本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.16.(1)6,0.6xy;(2)y=3)3(1.03.033.0xxx当当17.解:(1)22a,54a………………………………………4分(2)由题意知:等比数列{}nb中,12252,4baba,公比212bqb……………………………………6分学而思网校{}nb等比数列的通项公式111(2)(2)(2)nnnnbbq……………8分18.解:(1)圆C的半径为132|CM|,所以圆C的方程为224xy……………2分(2)圆心到直线l的距离为22-42211||d,…………4分所以P到直线l:40xy的距离的最小值为:222…………5分(3)直线l的方程为043yx19.证:(1)在△PBC中,E、F为BC和PC的中点,所以EF∥BP.因此EFPBEFPBDEFPBDPBPBD平面平面平面∥∥.……………4分解:(2)因为EF∥BP,PD⊥平面ABCD,所以∠PBD即为直线EF与平面ABCD所成的角.又ABCD为正方形,BD=2AB,所以在Rt△PBD中,22tanBDPDPBD.所以EF与平面ABCD所成角的正切值为22.……………8分20.解:(1)由已知AB→·CA→=BA→·CB→.得AB→·CA→-BA→·CB→=0即AB→·(CA→+CB→)=0.设AB的中点为D,则CA→+CB→=2CD→,所以AB→·2CD→=0,∴AB→⊥CD→,AB⊥CD,又∵D为AB的中点,∴ΔABC是等腰三角形。……………3分(2)由已知AB→·CA→=BA→·CB→=-1得AB→·CA→+BA→·CB→=-2∴AB→·(CA→-CB→)=-2∴AB→·BA→=-2∴AB→2=2∴|AB→|=2∴AB=2……………6分(3)由|AB→+AC→|=6得|AB→+AC→|2=6,即AB→2+AC→2+2AB→·AC→=6∴2+AC→2+2=6∴AC→2=2∴|AC→|=2∴ΔABC是边长为2的正三角形学而思网校∴ΔABC的面积为32.……………10分