湖南省郴州市2014年中考数学试卷及答案(word版含解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2014年湖南省郴州市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(2014年湖南郴州)﹣2的绝对值是()A.B.﹣C.2D.﹣2分析:根据负数的绝对值等于它的相反数解答.解:﹣2的绝对值是2,即|﹣2|=2.故选:C.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2014年湖南郴州)下列实数属于无理数的是()A.0B.πC.D.﹣分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A、是整数,是有理数,选项错误;B、正确;C、=3是整数,是有理数,选项错误;D、是分数,是有理数,选项错误.故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(3分)(2014年湖南郴州)下列运算正确的是()A.3x﹣x=3B.x2•x3=x5C.(x2)3=x5D.(2x)2=2x2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据幂的乘方,可判断C;根据积的乘方,可判断D.解答:解:A、系数相减字母部分不变,故A错误;B、底数不变指数相加,故B正确;C、底数不变指数相乘,故C错误;D、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故D错误;故选:B.点评:本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.4.(3分)(2014年湖南郴州)已知圆锥的母线长为3,底面的半径为2,则圆锥的侧面积是()A.4πB.6πC.10πD.12π考点:圆锥的计算.专题:计算题.分析:根据锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.解答:解:圆锥的侧面积=•2π•2•3=6π.故选:B.点评:本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5.(3分)(2014年湖南郴州)以下图形既是轴对称图形,又是中心对称图形的是()A.等腰三角形B.平行四边形C.矩形D.等腰梯形考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,也是轴对称图形;D、不是中心对称图形,是轴对称图形.故选:C.点评:掌握好中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称折叠后可重合,判断中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.6.(3分)(2014年湖南郴州)下列说法错误的是()A.抛物线y=﹣x2+x的开口向下B.两点之间线段最短C.角平分线上的点到角两边的距离相等D.一次函数y=﹣x+1的函数值随自变量的增大而增大考点:二次函数的性质;一次函数的性质;线段的性质:两点之间线段最短;角的概念.分析:根据二次函数的性质对A进行判断;根据线段公理对B进行判断;根据角平分线的性质对C进行判断;根据一次函数的性质对D进行判断.解答:解:A、由于a=﹣1<0,则抛物线开口向下,所以A选项的说法正确;B、两点之间线段最短,所以B选项的说法正确;C、角平分线上的点到角两边的距离相等,所以C选项的说法正确;D、当k=﹣1,y随x的增大而减小,所以D选项的说法错误.故选:D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下.也考查了一次函数的性质、角平分线的性质和线段的性质.7.(3分)(2014年湖南郴州)平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等考点:正方形的性质;平行四边形的性质;菱形的性质;矩形的性质.专题:证明题.分析:本题主要依据平行四边形、矩形、菱形、正方形都具有对角线相互平分的性质来判断.解答:解:A、对角线相等是平行四边形、矩形、菱形、正方形都具有的性质;B、对角线互相垂直是菱形、正方形具有的性质;C、对角线相等是矩形和正方形具有的性质;D、对角线互相垂直且相等是正方形具有的性质.故选:A.点评:本题主要考查平行四边形、矩形、菱形、正方形的性质定理.8.(3分)(2014年湖南郴州)我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这七名同学成绩的()A.众数B.平均数C.中位数D.方差考点:统计量的选择.分析:7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解答:解:由于总共有7个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少.故选:C.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.二、填空题(共8小题,每小题3分,满分24分)9.(3分)(2014年湖南郴州)根据相关部门统计,2014年我国共有9390000名学生参加高考,9390000用科学记数法表示为9.39×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:9390000用科学记数法表示为9.39×106,故答案为:9.39×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2014年湖南郴州)数据0、1、1、2、3、5的平均数是2.考点:算术平均数.分析:根据算术平均数的计算公式列出算式,再求出结果即可.解答:解:数据0、1、1、2、3、5的平均数是(0+1+1+2+3+5)÷6=12÷6=2;故答案为:2.点评:此题考查了算术平均数,用到的知识点是算术平均数的计算公式,关键是根据题意列出算式.11.(3分)(2014年湖南郴州)不等式组的解集是﹣1<x<5.考点:解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:,解①得:x>﹣1,解②得:x<5,则不等式组的解集是:﹣1<x<5.点评:本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).12.(3分)(2014年湖南郴州)如图,已知A、B、C三点都在⊙O上,∠AOB=60°,∠ACB=30°.考点:圆周角定理.分析:由∠ACB是⊙O的圆周角,∠AOB是圆心角,且∠AOB=60°,根据圆周角定理,即可求得圆周角∠ACB的度数.解答:解:如图,∵∠AOB=60°,∴∠ACB=∠AOB=30°.故答案是:30°.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.13.(3分)(2014年湖南郴州)函数的自变量x的取值范围是x≥6.考点:函数自变量的取值范围;二次根式有意义的条件.分析:二次根式有意义的条件是被开方数是非负数,列不等式求解.解答:解:根据题意得:x﹣6≥0,解得x≥6.点评:本题考查的知识点为:二次根式的被开方数是非负数.14.(3分)(2014年湖南郴州)如图,在△ABC中,若E是AB的中点,F是AC的中点,∠B=50°,则∠AEF=50°.考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC,再根据两直线平行,同位角相等可得∠AEF=∠B.解答:解:∵E是AB的中点,F是AC的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠AEF=∠B=50°.故答案为:50°.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行线的性质,熟记定理与性质并准确识图是解题的关键.15.(3分)(2014年湖南郴州)若,则=.考点:比例的性质.分析:先用b表示出a,然后代入比例式进行计算即可得解.解答:解:∵=,∴a=,∴=.故答案为:.点评:本题考查了比例的性质,用b表示出a是解题的关键,也是本题的难点.16.(3分)(2014年湖南郴州)如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的F点上,则DF的长为6.考点:翻折变换(折叠问题).分析:根据矩形的性质得出CD=AB=8,∠D=90°,根据折叠性质得出CF=BC=10,根据勾股定理求出即可.解答:解:∵四边形ABCD是矩形,∴AB=DC=8,∠D=90°,∵将矩形ABCD沿CE折叠后,点B落在AD边的F点上,∴CF=BC=10,在Rt△CDF中,由勾股定理得:DF===6,故答案为:6.点评:本题考查了勾股定理,折叠的性质,矩形的性质的应用,解此题的关键是求出CF和DC的长,题目比较典型,难度适中.三、解答题(共6小题,满分36分)17.(6分)(2014年湖南郴州)计算:(1﹣)0+(﹣1)2014﹣tan30°+()﹣2.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项利用特殊角的三角函数值计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=1+1﹣×+9=10.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014年湖南郴州)先化简,再求值:(﹣),其中x=2.考点:分式的化简求值.分析:先将括号内的部分因式分解,约分后再将除法转化为乘法,然后代入求值.解答:解:原式=[﹣]•=(+)•=•=.当x=2时,原式==1.点评:本题考查了分式的化简求值,熟悉约分、通分因式分解是解题的关键.19.(6分)(2014年湖南郴州)在13×13的网格图中,已知△ABC和点M(1,2).(1)以点M为位似中心,位似比为2,画出△ABC的位似图形△A′B′C′;(2)写出△A′B′C′的各顶点坐标.考点:作图-位似变换.分析:(1)利用位似图形的性质即可位似比为2,进而得出各对应点位置;(2)利用所画图形得出对应点坐标即可.解答:解:(1)如图所示:△A′B′C′即为所求;(2)△A′B′C′的各顶点坐标分别为:A′(3,6),B′(5,2),C′(11,4).点评:此题主要考查了位似图形的性质,利用位似图形的性质得出对应点坐标是解题关键.20.(6分)(2014年湖南郴州)已知直线l平行于直线y=2x+1,并与反比例函数y=的图象相交于点A(a,1),求直线l的解析式.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先根据反比例函数图象上点的坐标特征确定A(1,1),再设直线l的解析式为y=kx+b,利用两直线平行得到k=2,然后把A点坐标代入y=2x+b求出b,即可得到直线l的解析式.解答:解:把A(a,1)代入y=得a=1,则A点坐标为(1,1)设直线l的解析式为y=kx+b,∵直线l平行于直线y=2x+1,∴k=2,把A(1,1)代入y=2x+b得2+b=1,解得b=﹣1,∴直线l的解析式为y=2x﹣1.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功