激光热处理的应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

本设备是集光、机、电以及制冷和材料加工技术一体的大型集成设备,能对轴类、平面类、缸套类、齿轮类、以及空间工模具类等产品进行激光淬火、激光熔覆、激光表面合金化加工,从而达到改善工件的表面性能、提高工件的使用寿命、恢复工件的外型尺寸以重复使用等目的。主要特点:模块化设计,高度集成,具有良好的系统性能及很高的使用寿命;功能齐全,使用方便;激光加工精度高,效率高,运行稳定可靠;抗干扰能力强,动态响应速度快;造型美观,操作及维护简便。激光热处理是一种表面热处理技术。即利用激光加热金属材料表面实现表面热处理。激光加热具有极高的功率密度,即激光的照射区域的单位面积上集中极高的功率。由于功率密度极高,工件传导散热无法及时将热量传走,结果使得工件被激光照射区迅速升温到奥氏体化温度实现快速加热。当激光加热结束,因为快速加热时工件基体大体积中仍保持较低的温度,被加热区域可以通过工件本身的热传导迅速冷却,从而实现淬火等热处理效果。激光淬火效果:激光淬火层的硬度分布曲线激光淬火层的硬度分布激光淬火技术可对各种导轨、大型齿轮、轴颈、汽缸内壁、模具、减振器、摩擦轮、轧辊、滚轮零件进行表面强化。适用材料为中、高碳钢,铸铁。激光淬火的应用实例:激光淬火强化的铸铁发动机汽缸,其硬度提高HB230提高到HB680,使用寿命提高2~3倍。]概念定义:利用激光进行加热的热处理工艺称作激光热处理,它是一种高能量密度表面热处理,具有超高加热速度,其淬火硬化层的性质和状态与普通淬火有着显著的区别。研究范围:激光热处理的研究分为不熔化表面热处理和熔化表面热处理两大类。不熔化表面热处理主要包括激光表面相变硬化、激光冲击热处理和激光表面退火等;熔化表面热处理主要包括激光表面熔凝、激光表面合金化和激光非晶态等。(一)发展过程70年代初~80年代初需求动力:70年代大功率CO2激光器的出现,推动了激光热处理的发展。主要特点:该阶段的主要特点是:1.广泛开展激光表面相变硬化(即激光淬火)的研究和应用;2.开展激光表面合金化的探索研究;3.受激光器功率的影响,激光热处理工艺的应用受到一定局限,未能迅速发展。典型成果和产品:典型成果:激光热处理设备、激光表面相变硬化工艺的应用80年代初~至今需求动力:随着激光技术的发展,激光器功率的提高,激光热处理的优点日趋明显,从而推动激光热处理的迅速发展。激光热处理作为一种很好的节能型热处理工艺也是其迅速发展的动力之一。主要特点:该阶段的主要特点:1.激光热处理设备已商业化,正朝小型化、自动化和柔性化方向发展;2.激光表面相变硬化处理工艺日趋成熟,广泛用于汽车、航空航天、武器等工业部门;3.激光表面合金化工艺因具有极大的经济效益,倍受各国的重视,研究工作进展较大,但仍处于基础工艺试验、组织分析和性能试验的实验室研究阶段,尚未进入工业应用;4.开展了激光涂覆处理、激光表面熔凝、激光脉冲冲击强化处理和激光渗氮处理等工艺的研究。典型成果和产品:典型成果:激光表面相变硬化处理广泛用于军用部门和民用部门。(二)现有水平及发展趋势激光热处理是70年代初首先在美国发展起来的金属表面强化新工艺。激光热处理具有加热和冷却速度快、工件变形小、可进行局部热处理、工艺灵活性大、污染小和易实现自动化等优点。目前,国外应用较多的激光热处理主要有激光表面相变硬化、激光冲击处理、激光表面合金化和激光表面熔凝等。激光表面相变硬化处理现已用于铸铁、碳钢、合金钢、钛合金、铝合金等材料。美国海军面射武器中心及陆军导弹分部对用于导弹上的凸轮、轴承、齿轮等零件进行激光表面相变硬化代替渗碳或渗氮工艺而取得了成功。前苏联对钛合金进行这种处理后,表面的显微硬度提高了75~125%,同时也提高了抗腐蚀性和抗磨性能。最近,德国在激光相变硬化时的温度控制和激光连续扫描时搭接软化带的控制方面取得了较大进展。激光冲击处理是通过在材料表面产生压力脉冲来改变材料的组织和应力状态,从而改善材料性能,特别是疲劳性能,美国人对航天常用铝合金7075和2024进行了激光冲击热处理,提高了铝合金的疲劳寿命。激光表面合金化是利用功率较高的激光器对表面涂敷有合金元素的金属表面进行照射,使表面一层薄层迅速熔化,合金元素在熔化层内迅速扩散,凝固时在表面形成一层所需的合金化层。目前美国、原苏联、日本和西欧等国都十分重视这方面的研究。但由于该工艺需要的激光设备功率较高,工序比较复杂,现仍处于试验研究阶段,有待于进一步开发。最近,激光热处理技术除了在西方发达国家取得很大进展外,一些发展中国家也在进行真空热处理的研究工作。南斯拉夫学者利用600W的LPW6000激光系统对结构碳钢、铬钼结构钢和铬钨工具钢进行了激光表面硬化处理,研究了热处理对微观硬度、淬火裂纹和残余应力的影响。朝鲜学者利用2.4KW的CW-CO2激光器研究了钢经激光热处理后,马氏体相变塑性对热应力的影响。Jiguangrechulixianzhaungjifazhan摘要:作者从4个方面介绍了近年来我国激光热处理的现状及发展:(1)激光硬化;(2)激光熔覆;(3)激光合金化;(4)工程应用。关键词:激光相变硬化;激光冲击硬化;激光熔覆;激光合金化1前言我国激光热处理的研究、开发和应用,自70年代由铁科院金化所和中科院长春光机所等单位率先开展以来,已有20多年的历史。迄今,我国开展激光热处理的单位已遍及除西藏以外的各省、自治区、直辖市。在国家“六五”、“七五”、“八五”、“九五”攻关和“863”计划,国家自然科学基金和各地的科技发展基金的支持和引导下,取得了大量有价值的研究成果,并有若干突破性进展,取得了一定规模的工业应用。在我国,激光热处理领域的产、学、研相结合的格局已经初步形成。可以预期,经过坚持不懈的努力,将有更多的突破,市场的开拓也必定会有更大的进展。2激光硬化2.1激光相变硬化的强化机理和组织的研究重庆大学[1]对GCr15钢经激光淬火后引起高硬度(1065HV)的原因用光学金相、扫描和透射电镜、X光衍射仪、俄歇分析仪及电子探针作了系统的试验研究。提出GCr15钢激光相变硬化机理为:①以马氏体相变强化为主,马氏体很细,尺寸为0.196μm×1.8μm,马氏体位错密度很高,达2.3×1012条/cm3,马氏体的含碳量高达0.90%;②残留奥氏体显著强化,其位错密度达3.6×1012条/cm3;③晶粒超细化(ASTMNo.16)和碳化物细化(最表面处为0.59μm,离表面0.1mm处为0.41μm)及弥散分布。山东工业大学[2]对W18Cr4V高速钢经激光相变硬化后的强化机理和组织性能作了研究:激光相变区的晶粒由原来的8级提高到12级,残留奥氏体量较常规淬火有明显减少,约10%~15%,相变区的马氏体为针状马氏体和板条马氏体的混合组织。激光快速加热时间虽短,仍存在碳化物的不完全溶解以及碳和合金元素的不充分扩散,扩散距离约数百nm数量级,碳化物的溶解以尖角-均匀溶解机制进行。激光相变硬化层的硬度峰值为946HV,红硬性比常规淬火高出80℃,640℃回火后硬度峰值达到1003HV,耐磨性较常规热处理提高1~2.8倍,经640℃回火后耐磨性提高5.3~8.1倍,刀具的切削性能提高2倍以上。上海工程技术大学[3]研究了硼铸铁的激光热处理,研究表明:硼铸铁经激光处理后,磨损值降低45.7%。激光热处理提高硼铸铁耐磨性的原因是激光硬化层的高硬度及合理的硬度梯度以及局部熔化区对石墨片割裂的封闭。关于强化机理的研究还有许多精彩的报道,限于篇幅无法一一列出,但这些工作已经并将继续为激光相变硬化的工程应用作出积极的贡献。2.2激光相变硬化的温度场及相变硬化区尺寸的计算为了实现激光相变硬化工艺的计算机控制,早日达到实际应用,正努力解决两个问题:①快速计算;②减少计算与实际间的误差。昆明理工大学[4]对稳态温度场的计算公式进行快速傅里叶(Fourier)变换,可以迅速对温度场求解,在求解过程中已不必进行关于时间的积分运算,使计算速度显著增加,与同精度的有限元或有限差分等纯数值计算相比,计算速度快两个数量级以上。实际证实,计算与试验结果之间的相对误差在10%左右。对瞬态温度场计算公式,利用快速Fourier变换[5],即FFT技术,可使温度场的求解速度大大加快,效果与稳态温度场时相同。此方法适于任意给定的激光功率密度分布。如果能有效监测实际光束的功率密度分布,并能迅速计算激光与物质的相互热作用,对于保证激光热处理的质量有重要意义。上海海运学院[6]采用非稳态瞬时热源解法,导出了描述激光淬火对零件内部热循环过程及快速估算硬化层深度的近似公式,简便实用,误差较小。我们知道,在激光作用下材料吸收激光能量的过程和随后往内部传递热能的过程应该遵守热力学的基本定律,但它明显地有着自身的特殊性,如热过程速度极快、温度梯度大、激光束斑的功率密度分布不均匀而且随时间还会发生变化;激光作用又有连续和脉冲两种方式,在激光作用过程中材料对激光的吸收率以及一些热力学参数随温度变化而变化等。当然不可忽视的是:在激光作用下不同材料本身的组织、结构、成分及其在热作用过程中的变化规律差别很大。因此,激光与材料相互作用过程是一个非常复杂的问题。许多计算方法及其得出的公式都是在限定条件的情况下提出的,若所作的假设与实际情况相差甚远,则基本上对实际热处理工艺的制定没有直接的指导作用。近期的一些研究在这方面已作了很大的努力,试图接近实际,但看来要实现激光相变硬化的计算机控制还有一段距离。2.3激光淬火用光热转换材料的研究一般来说,需激光硬化的金属材料表面都经过机械加工,表面粗糙度很小,对激光的反射率可达80%~90%,因此通常采用对激光有较高吸收能力的涂料进行预处理。在这方面长春光机所、清华大学等单位做了许多探索。近年来上海工程技术大学[7]以光热转换材料(简称吸收涂层)的光谱发射率及激光相变硬化区面积为依据,研制成以金属氧化物为主的混合氧化物的新型光热转换材料。该材料对CO2激光的吸收率达90%以上,具有工艺性能良好、干燥快、无刺激性气味和激光处理过程中无反喷等优点,有较好推广应用价值。华中理工大学[8]比较了国内有些单位采用的两种光热转换材料——磷化膜与SiO2胶体涂料,得到以下结果:①SiO2胶体涂料的光热转换效率优于磷化膜的;②由于基体与磷化液之间的化学反应造成表面粗糙度增大,且磷与铁之间形成低熔点脆性共晶相,引起硬化层出现晶间微裂纹。所以SiO2胶体的淬硬层质量优于磷化膜;③SiO2涂层的工艺过程简单,无环境污染,灵活性强。从目前来看,激光相变硬化的工业应用离不开采用适宜的光热转换材料。如何保证大批量工业应用过程中涂覆光热转换材料的稳定性、均匀性及可检测性并进一步降低生产成本,还需做进一步工作。2.4激光加常规复合处理激光热处理是一项新技术,有非常明显的特点,也有一定的适用范围,将激光热处理与适当的常规热处理技术巧妙地结合起来,优势互补,显然是非常好的思路。北京航空航天大学[9]对球墨铸铁材料先用激光表面重熔处理,然后在750℃石墨化退火,使快速凝固共晶渗碳体亚稳相部分地转变为石墨,成功地制得了既含硬质耐磨快速凝固共晶渗碳体,又含弥散石墨的新型铁基多相耐磨材料。通过改变退火时间来调节渗碳体和石墨的相对量。由于渗碳体的较佳耐磨性加上石墨的自润滑,是较理想的摩擦学材料。长春光机学院[10]对18Cr2Ni4WA钢先行渗碳处理,使碳呈梯度分布,然后激光相变处理。在复合处理作用下,硬化层分成3个区:第一区为表层完全淬硬区,其最表面为针状马氏体+渗碳体+残留奥氏体,次表面为针状马氏体+板条马氏体+残留奥氏体;第二区为过渡层,由马氏体+回火析出碳化物组成;第三区为高温回火区,由回火索氏体组成。随着经济发展,对机械零部件的性能要求将是多种多样的,采用一种热处理工艺往往难以解决问题。因此复合热处理技术的市场需求会有一定程度的增长。2.5激光冲击硬化激光冲击处理(LSP)主要是利用强激光与材料表面相互作用产生的力学效应——强应力波来改善材料性能。此技术能有效地强化钢、铝、钛、镍等金属材料,特别是2024T3铝合金经激光冲击强化后

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功