第一章植物的水分代谢一、名词解释1.自由水:距离胶粒较远而可以自由流动的水分。2.束缚水:靠近胶粒而被胶粒所束缚不易自由流动的水分。3.渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。4.水势(w):每偏摩尔体积水的化学势差。符号:w。5.渗透势():由于溶液中溶质颗粒的存在而引起的水势降低值,符号。用负值表示。亦称溶质势(s)。6.压力势(p):由于细胞壁压力的存在而增加的水势值。一般为正值。符号p。初始质壁分离时,p为0,剧烈蒸腾时,p会呈负值。7.衬质势(m):细胞胶体物质亲水性和毛细管对自由水束缚而引起的水势降低值,以负值表示。符号m。8.吸涨作用:亲水胶体吸水膨胀的现象。9.代谢性吸水:利用细胞呼吸释放出的能量,使水分经过质膜进入细胞的过程。10.蒸腾作用:水分以气体状态通过植物体表面从体内散失到体外的现象。11.根压:植物根部的生理活动使液流从根部上升的压力。12.蒸腾拉力:由于蒸腾作用产主的一系列水势梯度使导管中水分上升的力量。13.蒸腾速率:又称蒸腾强度,指植物在单位时间内,单位面积通过蒸腾作用而散失的水分量。(g/dm2·h)14.蒸腾比率:植物每消耗l公斤水时所形成的干物质重量(克)。15.蒸腾系数:植物制造1克干物质所需的水分量(克),又称为需水量。它是蒸腾比率的倒致。16.内聚力学说:又称蒸腾流-内聚力-张力学说。即以水分的内聚力解释水分沿导管上升原因的学说。五、问答题1.水分子的物理化学性质与植物生理活动有何关系?水分子是极性分子,可与纤维素、蛋白质分子相结合。水分子具有高比热,可在环境温度变化较大的条件下,植物体温仍相当稳定。水分子还有较高的气化热,使植物在烈日照射下,通过蒸腾作用散失水分就可降低体温,不易受高温为害。水分子是植物体内很好的溶剂,可与含有亲水基团的物质结合形成亲水胶体,水还具有很大的表面张力,产主吸附作用,并借毛细管力进行运动。2.简述水分的植物生理生态作用。(1)水是细胞原生质的主要组成成分;(2)水分是重要代谢过程的反应物质和产物;(3)细胞分裂及伸长都需要水分;(4)水分是植物对物质吸收和运输及生化反应的一种良好溶剂;(5)水分能便植物保持固有的姿态;(6)可以通过水的理化特性以调节植物周围的大气湿度、温度等。对维持植物体温稳定和降低体温也有重要作用。3.植物体内水分存在的状态与代谢关系如何?植物体中水分的存在状态与代谢关系极为密切,并且与抗往有关,一般来说,束缚水不参与植物的代谢反应,在植物某些细胞和器官主要含束缚水时,则其代谢活动非常微弱,如越冬植物的休眠和干燥种子,仅以极弱的代谢维持生命活动,但其抗性却明显增强,能渡过不良的逆境条件,而自由水主要参与植物体内的各种代谢反应,含量多少还影响代谢强度,含量越高,代谢越旺盛,因此常以自由水/束缚水的比值作为衡量植物代谢强弱和抗性的生理指标之一。4.水分代谢包括哪些过程?植物从环境中不断地吸收水分,以满足正常的生命活动的需要。但是,植物又不可避免地要丢失大量水分到环境中去。具体而言,植物水分代谢可包括三个过程:(1)水分的吸收;(2)水分在植物体内的运输;(3)水分的排出。5.利用质壁分离现象可以解决哪些问题?(1)说明原生质层是半透膜。(2)判断细胞死活。只有活细胞的原生质层才是半透膜,才有质壁分离现象,如细胞死亡,则不能产主质壁分窝现象。(3)测定细胞液的渗透势。6.土壤温度过高对根系吸水有什么不利影响?高温加强根的老化过程,使根的木质化部位几乎到达尖端,吸收面识减少,吸收速率下降;同时,温度过高,使酶钝化:细胞质流动缓慢甚至停止。7.蒸腾作用有什么生理意义?(1)是植物对水分吸收和运输的主要动力,(2)促进植物时矿物质和有机物的吸收及其在植物体内的转运。(3)能够降低叶片的温度,以免灼伤。8.气孔开闭机理的假说有哪些?请简述之。(1)淀粉--糖变化学说:在光照下保卫细胞进行光合作用合成可溶性糖。另外由于光合作用消耗C02,使保卫细胞pH值升高,淀粉磷酸化酶水解细胞中淀粉形成可溶性糖,细胞水势下降,当保卫细胞水势低于周围的细胞水势时,便吸水迫使气孔张开,在暗中光合作用停止,情况与上述相反,气孔关闭。(2)无机离子吸收学说:在光照下,保卫细胞质膜上具有光活化H+泵ATP酶,分解光合磷酸化产生的ATP并将H+分泌到细胞壁,同时将外面的K+吸收到细胞中来,Cl-也伴随着K+进入,以保证保卫细胞的电中性,保卫细胞中积累较多的K+和,降低水势,气孔就张开,反之,则气孔关闭。(3)苹果酸生成学说。在光下保卫细胞内的C02被利用,pH值就上升,剩余的C02就转变成重碳酸盐(HCO3-),淀粉通过糖酵解作用产生的磷酸烯醇式丙酮酸在PEP羧化酶作用下与HC03-作用形成草酰乙酸,然后还原成苹果酸,可作为渗透物降低水势,气孔张开,反之关闭。9.根据性质和作用方式抗蒸腾剂可分为哪三类?(1)代谢型抗蒸汤剂:如阿特拉津可使气孔开度变小,苯汞乙酸可改受膜透性使水不易向外扩散。(2)薄膜型抗蒸腾剂:如硅酮可在叶面形成单分子薄层,阻碍水分散失。(3)反射型抗蒸腾剂:如高岭土,可反射光,降低叶温,从而减少蒸腾量。10.小麦整个生育期中有哪两个时期为水分临界期?第一个水分临界用是分蘖末期到抽穗期(孕穗期)。第二个水分临界期是开始灌浆到乳熟末期。第二章植物的矿质营养一、名词解释1.矿质营养:是指植物对矿质元素的吸收、运输与同化的过程。2.灰分元素:亦称矿质元素,将干燥植物材料燃烧后,剩余一些不能挥发的物质称为灰分元素。3.大量元素:在植物体内含量较多,占植物体干重达万分之一以上的元素。包括钙、镁、硫、氮、磷、钾、碳、氢、氧等9种元素。4.微量元素:植物体内含量甚微,稍多即会发生毒害的元素包括:铁、锰、硼、锌、铜、钼和氯等7种元素。5.杜南平衡:细胞内的可扩散负离子和正离子浓度的乘积等于细胞外可扩散正、负离子浓度乘积时的平衡,叫杜南(道南)平衡。它不消耗代谢能,属于离子的被动吸收方式。6.单盐毒害和离子拮抗:单盐毒害是指溶液中因只有一种金属离子而对植物之毒害作用的现象;在发生单盐毒害的溶液中加入少量其他金属离子,即能减弱或消除这种单盐毒害,离子间的这种作用称为离子拮抗。7.平衡溶液:在含有适当比例的多种盐溶液中,各种离子的毒害作用被消除,植物可以正常生长发育,这种溶液称为平衡溶液。8.胞饮作用:物质吸附在质膜上,然后通过膜的内折而转移到细胞内的攫取物质及液体的过程。9.诱导酶:又称适应酶,指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。如硝酸还原酶可为NO3-所诱导。10.生物固氮:某些微生物把空气中游离氮固定转化为含氮化合物的过程。五、问答题1.植物必需的矿质元素要具备哪些条件?(1)缺乏该元素植物生育发生障碍不能完成生活史。(2)除去该元素则表现专一的缺乏症,这种缺乏症是可以预防和恢复的。(3)该元素在植物营养生理上表现直接的效果而不是间接的。2.为什么把氮称为生命元素?氮在植物生命活动中占据重要地位,它是植物体内许多重要化合物的成分,如核酸(DNA、RNA)、蛋白质(包括酶)、磷脂、叶绿素。光敏色素、维生素B、IAA、CTK、生物碱等都含有氮。同时氮也是参与物质代谢和能量代谢的ADP、ATP、CoA、CoQ、FAD、FMN、NAD+、NADP+、铁卟琳等物质的组分。上述物质有些是生物膜、细胞质、细胞核的结构物质,有些是调节生命活动的生理活牲物质。因此,氮是建造植物体的结构物质,也是植物体进行能量代谢、物质代谢及各种生理活动所必需的起重要作用的生命元素。3.植物细胞吸收矿质元素的方式有哪些?(1)被动吸收:包括简单扩散、杜南平衡。不消耗代谢能。(2)主动吸收:有载体和质子泵参与,需消耗代谢能。(3)胞饮作用:是一种非选择性吸收方式。4.设计两个实验,证明植物根系吸收矿质元素是一个主动的生理过程。(1)用放射性同位素(如32P示踪。用32P饲喂根系,然后用呼吸抑制剂处理根系,在呼吸抑制剂处理前后测定地上部分32P的含量,可知呼吸被抑制后,32P的吸收即减少。(2)测定溶液培养植株根系对矿质吸收量与蒸腾速率之间不成比例,说明根系吸收矿质元素有选择性,是主动的生理过程。5.外界溶液的pH值对矿物质吸收有何影响?(1)直接影响,由于组成细胞质的蛋白质是两性电解质,在弱酸性环境中,氨基酸带正电荷,易于吸附外界溶液中阴离子。在弱碱性环境中,氨基酸带负电荷,易于吸附外界溶液中的阳离子。(2)间接影响:在土壤溶液碱性的反应加强时,Fe、Ca、Mg、Zn呈不溶解状态,能被植物利用的量极少。在酸性环境中P、K、Ca、Mg等溶解,但植物来不及吸收易被雨水冲掉,易缺乏。而Fe、Al、Mn的溶解度加大,植物受害。在酸性环境中,根瘤菌会死亡,固氮菌失去固氮能力。6.为什么土壤温度过低,植物吸收矿质元素的速率下降?因为温度低时代谢弱,能量不足,主动吸收慢;胞质粘性增大,离子进入困难。其中以对钾和硅酸的吸收影响最大。7.白天和夜晚硝酸盐还原速度是否相同?为什么?硝酸盐在昼夜的还原速度不同,白天还原速度显著较夜晚快,这是因为白天光合作用产生的还原力及磷酸丙糖能促进硝酸盐的还原。8.固氮酶有哪些特性?简述生物固氮的机理。固氮酶的特性:(1)由Fe蛋白和Mo-Fe蛋白组成,两部分同时存在才有活性;(2)对氧很敏感,氧分压稍高就会抑制固氮酶的固氮作用,只有在很低的氧化还原电位条件下,才能实现固氮过程,(3)具有对多种底物起作用的能力;(4)氨是固氮菌的固氮作用的直接产物。其积累会抑制固氮酶的活性。生物固氮机理:(1)固氮是一个还原过程,要有还原剂提供电子,还原一分子N2为两分子的NH3,需要6个电子和6个H+。主要电子供体有丙酮酸、NADH、NADPH、H2等,电子载体有铁氧还蛋白(Fd)、黄素氧还蛋白(Fld)等;(2)固氮过程需要能量。由于N2具有三价键(NN),打开它需很多能量,大约每传递两个电子需4-5个ATP.整个过程至少要12-15个ATP;(3)在固氮酶作用下把氮还原成氨。9.合理施肥增产的原因是什么?合理施肥增产的实质在于改善光合性能(增大光合面积,提高光合能力,延长光合时间,有利光合产量分配利用等),通过光合过程形成更多的有机物获得高产。10.根外施肥有哪些优点?(1)作物在生育后期根部吸肥能力衰退时或营养临界期时,可根外施肥补充营养。(2)某些肥料易被土壤固定而根外施肥无此毛病,且用量少。(3)补充植物缺乏的微量元素,用量省、见效快。第三章植物的光合作用一、名词解释1.光合色素:指植物体内含有的具有吸收光能并将其用于光合作用的色素,包括叶绿素、类胡萝卜素、藻胆素等。2.原初反应:包括光能的吸收、传递以及光能向电能的转变,即由光所引起的氧化还原过程。3.红降现象:当光波大于685nm时,虽然仍被叶绿素大量吸收,但量子效率急剧下降,这种现象被称为红降现象。4.爱默生效应:如果在长波红光(大于685nm)照射时,再加上波长较短的红光(650nm),则量子产额大增,比分别单独用两种波长的光照射时的总和还要高。5.光合链:即光合作用中的电子传递。它包括质体醌、细胞色素、质体蓝素、铁氧还蛋白等许多电子传递体,当然还包括光系统I和光系统II的作用中心。其作用是水的光氧化所产生的电子依次传递,最后传递给NADP+。光合链也称Z链。6.光合作用单位:结合在类囊体膜上,能进行光合作用的最小结构单位。7.作用中心色素:指具有光化学活性的少数特殊状态的叶绿素a分子。8.聚光色素:指没有光化学活性,只能吸收光能并将其传递给作用中心色素的色素分子。聚光色素又叫天线色素。9.希尔反应:离体叶绿体在光下所进行的分解水并放出氧气的反应。10.光合磷酸化:叶绿体(或载色体)在光下把无机磷和ADP转化为ATP,并形成高能磷酸键的过程。11.光呼吸:植物的绿色细胞在光照下吸收氧气,放出CO2的过程。光呼吸的主要代谢途径就是乙醇酸的氧化,乙醇酸来源于RuBP的氧化。光呼吸之所以需要光就是因为RuBP的再生需要光。12.光补偿点:同一叶子在同一时间内