(一)从数学分析的课本讲起吧。下面开始讲一些课本,或者说参考书:1.菲赫今哥尔茨的微积分学教程,数学分析原理。前一本书,俄文版共三卷,中译本共8本;后一本书,俄文版共二卷,中译本共4本。此书堪称经典。微积分学教程其实连作者都承认不太合适作为教材,为此他才给出了能够做教材的后一套书,可以说是一个精简的版本。相信直到今天,很多老师在开课的时候还是会去找微积分学教程,因为里面各种各样的例题实在太多了,如果想比较扎实的打基础的话,可以考虑把里面的例题当做有答案的习题来做,当然不是每道题都可以这么办的。毫无疑问,这套书代表了以古典的方式处理数学分析内容(指不引入实变,泛函的观念)的最高水平。2.Apostol的MathematicalAnalysis在西方(西欧和美国),算得上相当完整的课本。3.W.Rudin的PrinciplesofMathematicalAnalysis(中译本:卢丁数学分析原理)是一本相当不错的书,后面我们可以看到,这位先生写了一个系列的教材。该书的讲法(指一些符号,术语的运用)也是很好的。学完高等数学以后,可以找一本西方advancedcalculus水平的书来看(特别是Rubin的书),基本上就能够达到一般数学系的要求了。说到AdvacedCalculus,在这个标题下面有一本书也是可以一看的,就是L.Loomis和S.Sternberg的AdvancedCalculus。这本书的观点还是很高的,毕竟是人家Harvard的课本.4.数学分析(北大版)方企勤,沈燮昌等的数学分析习题集,数学分析习题课教材。北大的这套课本写得还是可以的,不过最好的东西还是两本关于习题的东西。大家知道,吉米多维奇并不是很适合数学系的学生的,毕竟大多是计算题。相比之下北大的这本习题集就要好许多,的的确确值得一做。那本习题课教材也是很有意思的书,包括一些相当困难的习题的解答。5.克莱鲍尔的数学分析。记得那是一本以习题的形式讲分析的书,题目也很不错。6.张筑生的数学分析新讲(共三册)。我个人认为这是中国人写的观点最新的数学分析课本,张老师写这书也实在是呕心沥血,手稿前后写了差不多五遍。象他这样身有残疾的人做这样一件事情所付出的是比常人要多得多的,以致他自己在后记中也引了都云作者痴,谁解其中味。在这套书里,对于许多材料的处理都和传统的方法不太一样.非常值得一读。唯一的遗憾是,按照张老师本人的说法,北大出版社找了家根本不懂怎么印数学书的印刷厂,所以版面不是很好看。下面的一些书可能是比较新颖的.7a.尼柯尔斯基数学分析(教程?)是清华的人翻译的,好象没翻全。那属于80年代以后苏联的新潮流的代表,不管怎么说,人家是苏联科学院院士.7b.数学分析忘了是谁写的了,也是苏联的,莫斯科大学的教材。第一卷的中译本,分两册,从极限的讲法(对于拓扑基的)开始就能够明显得让人感觉到观点非常的高.8.狄多涅现代分析基础(第一卷)是一套二十世纪的大家写的一整套教材的第一卷,用的术语相当高深,可能等以后学了实变,泛函再回过头来看感觉会更好一些.9.说两句关于非数学专业的高等数学。强烈推荐理图里面几本法国人写的数学书。因为在法国高等教育系统里面,对于最好的学生,中学毕业以后念的是两年大学预科,这样就是不分系的,所以他们的高等数学(如J.Dixmier院士的高等数学第一卷)或者叫普通数学,其水平基本上介于国内数学系和物理系的数学课之间)10.再补充个技术性的小问题.对于函数项级数收敛,一致收敛是充分而非必要的,有一个充要条件叫亚一致收敛性,在微积分学教程里面提了一句,其详细讨论,似乎仅见于鲁金(Lusin)的实变函数论里面。11.华罗庚先生的高等数学引论第一卷。这套书(其实没有完成最初的计划)是六十年代初华先生在王元先生的辅助下对科大学生开课时的讲义。那时候他们做过个实验,就是一个教授负责一届学生的教学,所以华先生这书里面其实是涉及很多方面的(附带提一句,另外两位负责过一届学生的是关肇直先生和吴文俊先生)。也是出于一种尝试吧,华先生这书里面有一些不属于传统教学内容的东西,还包括一些应用。可以一读。12.何琛,史济怀,徐森林的数学分析。这应该是科大的教材,虽然好象影响不是很大,我本人还是很喜欢的,高一的时候第一次学数分就是用的这套书,感觉是条理清晰,配的习题也很好。印刷质量也相当不错。关于数学分析的习题,还有一本书,就是G.Polya(波利亚),G.Szego(舍贵)的数学分析中的问题和定理。在学习数学分析的阶段,可以考虑其第一卷的前面一半,后面就全是复变的东西了。该书的内容还是非常丰富的,在历史上,这是一套曾经使好几代数学家都受益匪浅的经典著作。这套书的一个好处就是题目难归难,后面还是有答案或提示的。(二)空间解析几何的参考书空间解析几何实在是一门太经典,或者说古典的课。从教学内容上说,可以认为它描述的主要是三维欧氏空间里面的一些基本常识,包括最基本的线性变换(那是线性代数的特例),和二阶曲面的不变量理论。苏步青和胡和生先生等编的空间解析几何非常薄,但内容较丰富,特别是有些习题并不是非常容易,最后一章射影的内容还不是很好念的。当然,这里还要提到十来年前大概作过教材的一本书:项武义和潘养廉等古典几何学。这书的内容与课本不是很一样,不过处理方法还是很不错的。可以考虑的参考书包括:1.陈(受鸟)的空间解析几何学。内容基本上和课本差不多,不过要厚许多,自然要好念点。陈先生是吴大任先生(大猷先生的堂弟,南开多年的教务长)的夫人,也是中国早期留学海外的女学者.2.朱鼎勋的解析几何学基本上只在欧氏空间里面讨论问题,优点是非常易懂,连二维的不变量理论也在附录里面交代得异常清楚。习题也比较合理,不是非常的难(如果我没有记错的话)。朱先生相当有才华,可惜英年早逝。3.Postnikov的解析几何学与线性代数(?)是莫斯科大学新的课本,从课程形式就可以看出,解析几何这样一门课如果不是作为对刚进大学的学生的一个引导,给出一些具体的对象的话,迟早是要给吃到线性代数里面去的。我个人以为,现在教委的减轻学生负担的做法迟早是要遭报应的。中国的中学教育水平也就比美国最糟糕的中学好点,从整体上说,比整个欧洲都要差。我相信所谓三维的解析几何的内容总有一天要下放到高中里面去。上面的书如果撑不饱你,你又不想学其它的课程的话,可以考虑下面两本经典,其好处是看过以后可以对很多几何对象(当然具体说是指三维空间里面的二次曲面)有相当深刻的了解。4.狄隆涅的(解析)几何学。这套三卷本的大书包括了许多非常有意思的讨论,记得五年前看的时候感觉非常有意思。这位苏联科学院院士真是够能写的。5.穆斯海里什维利的解析几何学教程。特别值得参考的是它里面关于射影的一些观点和讲法(比如认为椭圆也是有渐近线的,只不过是虚的而已).(三)“高等代数”的参考书高等代数可以认为处理的是有限维线性空间的理论,如严格一点,关于线性空间的理论应叫线性代数,再加上一点多项式理论(就是可完全算做代数内容的)就叫高等代数了。这门课在西方的对应一般叫LinearAlgebra,就是苏联人喜欢用高等这个词,你可以在外国教材中心里面找到一本Kurosh(库落什)的HigherAlgebra.北大的高等代数(第二版?)可以说是四平八稳,基本上该讲的都讲了,但是你要说它有什么地方讲得特别好,恐怕说不出来。从这门课的内容上说,是可以有很多种讲法的。线性空间的重点自然是线性变换,那么如果在定义空间和像空间里面取定一组基的话,就有一个矩阵的表示。因此这门课的确是可以建立在矩阵论上的,而且如果要和数值搭界的话还必须这么做。1.蒋尔雄,吴景琨等的线性代数是那时候计算数学专业的课本,其教学要求据说是比数学专业相应的课程要高。因为偏向计算,可以找到一些比较常用的算法,我个人以为还是比较有意思的。2.屠伯埙等的高等代数将80%的篇幅贡献给矩阵的有关理论,有大量习题,特别是每章最后的选做题.能独立把这里面的习题做完对于理解矩阵的各种各样的性质非常有益。当然这不是很容易的:据说屠先生退休时留下这么句话:今后如果有谁开高等代数用这本书做教材,在习题上碰到麻烦的话可以来找我.由此可见一斑。如果从习题方面考虑,觉得上面的书太难吃下去的话,那么下面这本应该说是比较适当的。3.屠伯埙等的线性代数-方法导引。这本书比上面那本可能更容易找到,题目也更实际些,值得一做。另外,讲到矩阵论.就必须提到4.甘特玛赫尔的矩阵论。这恐怕是这方面最权威的著作了,译者是柯召先生。在这套分两册的书里面,讲到了很多不纳入通常课本的内容。举个例子,大家知道矩阵有Jordan标准型,但是化一个矩阵到它的Jordan标准型的变换矩阵该怎么求?请看矩阵论。这书里面还有一些关于矩阵方程的讨论,非常有趣.5.许以超的线性代数和矩阵论。这本书写得很不错,习题也不错。必须指出,这里面其实对于空间的观念很重视。不管怎么样,他还是算华先生的弟子的。6.华罗庚的高等数学引论。华先生做数学研究的特点是其初等直观的方法别具一格,在矩阵理论方面他也有很好的工作.甘特玛赫尔的书里面你只能找到两个中国人的名字,一个是樊畿先生,另一个就是华先生。可能是他第一次把下述观点引进中国的数学教材的(不记得是不是在这本书里面了):n阶行列式是n个n维线性空间的笛卡尔积上唯一一个把一组标准基映到1的反对称线性函数。这就是和多线性代数或者说张量分析的观点很接近了。高等代数的另外一种考虑可能是更加代数化的,比如7.贾柯勃逊(N.Jacobson)LecturesonAbstractAlgebra,II:LinearAlgebraGTM(GraduateTextsinMathematics)No.31(抽象代数学第二卷:线性代数)8.GreubLinearAlgebra(GTM23)其实更多讲的是多线性代数.里面的有些章节还是值得一读的.9.丘维声的高等代数(上,下)相当不错,特点是很全,虽然在矩阵那个方向没有上面提到的几本书将得深,但是在空间理论,具体的说一些。几何化的思想上讲得还是非常清楚,多项式理论那块也讲了不少。10.李炯生,查建国的线性代数是科大的课本,可能是承袭华先生的一些传统把,里面有些内容的处理在国内属于相当先进的了。从常微分方程开始,数学课就变成没底的东西,每一个标题做下去都是数学研究里面庞大的一块。对于一门基本课程应该讲些什么也始终讨论不断,这里我打算还是从现行课本讲起。(四)常微分方程的参考书常微分方程这门课,金福临和李迅经先生在六十年代写过一课本,第一版在今天看来还是很好的一本课本,但第二版有那么点不敢恭维。不知为什么,似乎这本书对具体方程的求解特别感兴趣,对于一些比较现代的观点,比如定性的讨论等等相当地不重视。最有那么点好笑的是在某个例子中(好象是介绍Green函数方法的),在解完了之后话锋一转,说这个题其实按下面的办法解更简单...而这个所谓更简单的办法是根本不具一般性的.下面开始说参考书,毫无疑问,我们还是得从我们强大的北方邻国说起.1.彼得罗夫斯基的常微分方程讲义。在20世纪数学史上,这位前莫斯科大学校长占据着一个非常特殊的地位.从学术上说,他在偏微那一块有非常好的工作。他这本书在相当长的时期里是标准教材。2.庞特里亚金的常微分方程。庞特里亚金院士十四岁时因化学实验事故双目失明,在母亲的鼓励和帮助下,他以惊人的毅力走上了数学道路,别的不说,光看看他给后人留下的连续群、最佳过程的数学理论,你就不得不对他佩服得五体投地,有六体也投下来了。现代数学的一大特色即是已完全建立了一套自己的表达方式,没一个学科象数学这样创造了这么多的概念。现代数学传播的一大困难也在于此,要向一个非本行(哪怕是数学里另外一个分支的专家)解释清楚一个概念恐怕也要费上半天口舌。但在另外一方面数学是如此有用,而且数学的抽象性使得一个数学观点往往可以表征其它学科的许多看似毫无关系的对象,所以现代数学还是挺值得一学的。自学不是件容易的事情,特别是数学。从动机上说,如果是想系统学一下大学数学系的课程的话,我的建议还是跟班听课,这比自己找书看要省力的多,在可以考虑的书籍