模拟电路复习(1234568章)康华光

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2.1集成电路运算放大器2.2理想运算放大器2.3基本线性运放电路2.4同相输入和反相输入放大电路的其他应用2.1集成电路运算放大器1.集成电路运算放大器的内部组成单元图2.1.1集成运算放大器的内部结构框图2.3.1同相放大电路3.虚假短路图中输出通过负反馈的作用,使vn自动地跟踪vp,即vp≈vn,或vid=vp-vn≈0。这种现象称为虚假短路,简称虚短。由于运放的输入电阻ri很大,所以,运放两输入端之间的ip=-in=(vp-vn)/ri≈0,这种现象称为虚断。由运放引入负反馈而得到的虚短和虚断两个重要概念,是分析由运放组成的各种线性应用电路的利器,必须熟练掌握。2.3.1同相放大电路4.几项技术指标的近似计算(1)电压增益Av根据虚短和虚断的概念有vp≈vn,ip=-in=0o211npivvvvRRR所以12121io1RRRRRAvvv(可作为公式直接使用)2.3.1同相放大电路4.几项技术指标的近似计算(2)输入电阻Ri输入电阻定义iiiivR根据虚短和虚断有vi=vp,ii=ip≈0所以iiiivR(3)输出电阻RoRo→02.几项技术指标的近似计算(1)电压增益Av根据虚短和虚断的概念有vn≈vp=0,ii=0所以i1=i212ioRRAvvv2on1niRRvvvv即(可作为公式直接使用)2.3.2反相放大电路2.几项技术指标的近似计算(2)输入电阻Ri11iiiii/RRiRvvv(3)输出电阻RoRo→02.3.2反相放大电路2.4.1求差电路从结构上看,它是反相输入和同相输入相结合的放大电路。4on1ni1RvvRvv3p2pi20RvRvvi114i2323141ovRRvRRRRRRv))((当,2314RRRR则)(i1i214ovvRRv若继续有,14RR则i1i2ovvv根据虚短、虚断和n、p点的KCL得:pnvv2.4.3求和电路1ni1Rvv-3onRvv-根据虚短、虚断和n点的KCL得:2i231i13ovvvRRRR-321RRR若0pnvv2ni2Rvv-则有2i1iovvv-(该电路也称为加法电路)3.1半导体的基本知识3.3二极管3.4二极管的基本电路及其分析方法3.5特殊二极管3.2PN结的形成及特性3.1基本概念本征半导体——化学成分纯净的半导体。它在物理结构上呈单晶体形态。空穴——共价键中的空位。电子空穴对——由热激发而产生的自由电子和空穴对。空穴的移动——空穴的运动是靠相邻共价键中的价电子依次填充空穴来实现的。由于随机热振动致使共价键被打破而产生空穴-电子对3.1.4杂质半导体在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显著变化。掺入的杂质主要是三价或五价元素。掺入杂质的本征半导体称为杂质半导体。N型半导体——掺入五价杂质元素(如磷)的半导体。P型半导体——掺入三价杂质元素(如硼)的半导体。3.2.2PN结的形成3.2.2PN结的形成3.2.3PN结的单向导电性当外加电压使PN结中P区的电位高于N区的电位,称为加正向电压,简称正偏;反之称为加反向电压,简称反偏。(1)PN结加正向电压时•低电阻•大的正向扩散电流3.2.3PN结的单向导电性当外加电压使PN结中P区的电位高于N区的电位,称为加正向电压,简称正偏;反之称为加反向电压,简称反偏。(2)PN结加反向电压时•高电阻•很小的反向漂移电流在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流也称为反向饱和电流。PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。在一块本征半导体两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。此时将在N型半导体和P型半导体的结合面上形成如下物理过程:因浓度差空间电荷区形成内电场内电场促使少子漂移内电场阻止多子扩散最后,多子的扩散和少子的漂移达到动态平衡。多子的扩散运动由杂质离子形成空间电荷区对于P型半导体和N型半导体结合面,离子薄层形成的空间电荷区称为PN结。在空间电荷区,由于缺少多子,所以也称耗尽层。3.3.2二极管的V-I特性二极管的V-I特性曲线可用下式表示)1e(/SDDTVIiv锗二极管2AP15的V-I特性硅二极管2CP10的V-I特性3.4.2二极管电路的简化模型分析方法1.二极管V-I特性的建模将指数模型分段线性化,得到二极管特性的等效模型。DDS(e1)TnViIv(1)理想模型(a)V-I特性(b)代表符号(c)正向偏置时的电路模型(d)反向偏置时的电路模型3.4.2二极管电路的简化模型分析方法1.二极管V-I特性的建模(2)恒压降模型(a)V-I特性(b)电路模型(3)折线模型(a)V-I特性(b)电路模型3.5特殊二极管3.5.1齐纳二极管(稳压二极管)3.5.2变容二极管3.5.3肖特基二极管3.5.4光电子器件4.1BJT4.1.1BJT的结构简介4.1.2放大状态下BJT的工作原理4.1.3BJT的V-I特性曲线4.1.4BJT的主要参数4.1.5温度对BJT参数及特性的影响4.1BJT4.3放大电路的分析方法4.4放大电路静态工作点的稳定问题4.5共集电极放大电路和共基极放大电路4.2基本共射极放大电路4.6组合放大电路半导体三极管的结构示意图如图所示。它有两种类型:NPN型和PNP型。4.1.1BJT的结构简介(a)NPN型管结构示意图(b)PNP型管结构示意图(c)NPN管的电路符号(d)PNP管的电路符号集成电路中典型NPN型BJT的截面图4.1.1BJT的结构简介三极管的放大作用是在一定的外部条件控制下,通过载流子传输体现出来的。外部条件:发射结正偏集电结反偏4.1.2放大状态下BJT的工作原理1.内部载流子的传输过程发射区:发射载流子集电区:收集载流子基区:传送和控制载流子(以NPN为例)由于三极管内有两种载流子(自由电子和空穴)参与导电,故称为双极型三极管或BJT(BipolarJunctionTransistor)。IC=INC+ICBOIE=IB+IC放大状态下BJT中载流子的传输过程2.电流分配关系发射极注入电流传输到集电极的电流设ENCII即根据传输过程可知IC=INC+ICBO通常ICICBOECII则有为电流放大系数。它只与管子的结构尺寸和掺杂浓度有关,与外加电压无关。一般=0.90.99。IE=IB+IC放大状态下BJT中载流子的传输过程1又设是另一个电流放大系数。同样,它也只与管子的结构尺寸和掺杂浓度有关,与外加电压无关。一般1。CEIICBII2.电流分配关系3.三极管的三种组态(c)共集电极接法,集电极作为公共电极,用CC表示。(b)共发射极接法,发射极作为公共电极,用CE表示;(a)共基极接法,基极作为公共电极,用CB表示;BJT的三种组态综上所述,三极管的放大作用,主要是依靠它的发射极电流能够通过基区传输,然后到达集电极而实现的。实现这一传输过程的两个条件是:(1)内部条件:发射区杂质浓度远大于基区杂质浓度,且基区很薄。(2)外部条件:发射结正向偏置,集电结反向偏置。4.1.3BJT的V-I特性曲线iB=f(vBE)vCE=const.(2)当vCE≥1V时,vCB=vCE-vBE0,集电结已进入反偏状态,开始收集电子,基区复合减少,同样的vBE下IB减小,特性曲线右移。(1)当vCE=0V时,相当于发射结的正向伏安特性曲线。1.输入特性曲线(以共射极放大电路为例)共射极连接饱和区:iC明显受vCE控制的区域,该区域内,一般vCE<0.7V(硅管)。此时,发射结正偏,集电结正偏或反偏电压很小。iC=f(vCE)iB=const.2.输出特性曲线输出特性曲线的三个区域:截止区:iC接近零的区域,相当iB=0的曲线的下方。此时,vBE小于死区电压。放大区:iC平行于vCE轴的区域,曲线基本平行等距。此时,发射结正偏,集电结反偏。4.1.3BJT的V-I特性曲线3.静态工作点对波形失真的影响截止失真的波形饱和失真的波形3.静态工作点对波形失真的影响1.BJT的H参数及小信号模型H参数小信号模型根据可得小信号模型BJT的H参数模型vbe=hieib+hrevceic=hfeib+hoevceBJT双口网络1.BJT的H参数及小信号模型模型的简化hre和hoe都很小,常忽略它们的影响。BJT在共射极连接时,其H参数的数量级一般为S101010~101052433oefereieehhhhh静态工作点与动态参数•Q(IB,ICVCE)•动态参数:Av,Ri,Ro•组态:共射极,共基极,共集电极共射极放大电路放大电路如图所示。已知BJT的ß=80,Rb=300k,Rc=2k,VCC=+12V,求:(1)放大电路的Q点。此时BJT工作在哪个区域?(2)当Rb=100k时,放大电路的Q点。此时BJT工作在哪个区域?(忽略BJT的饱和压降)解:(1)μA40300k2V1bBECCBQRVVI(2)当Rb=100k时,3.2mAμA4080BQCQβII5.6V3.2mA2kV12CQcCCCEQIRVV静态工作点为Q(40A,3.2mA,5.6V),BJT工作在放大区。其最小值也只能为0,即IC的最大电流为:μA120100k2V1bCCBQRVImA6.9μA12080BQCQIIV2.79.6mA2k-V12CQcCCCEQIRVVmA62k2V1cCESCCCMRVVICMBQII由于,所以BJT工作在饱和区。VCE不可能为负值,此时,Q(120uA,6mA,0V),例题end4.4.2射极偏置电路(1)稳定工作点原理目标:温度变化时,使IC维持恒定。如果温度变化时,b点电位能基本不变,则可实现静态工作点的稳定。T稳定原理:ICIEVE、VB不变VBEIBIC(反馈控制)1.基极分压式射极偏置电路(a)原理电路(b)直流通路1.基极分压式射极偏置电路(2)放大电路指标分析①静态工作点CCb2b1b2BQVRRRVeBEQBQEQCQRVVII)(ecCQCCeEQcCQCCCEQRRIVRIRIVVβIICQBQ②电压增益A画小信号等效电路(2)放大电路指标分析方法:直流电压源视为接地;电容视为短路②电压增益输出回路:)||(LcboRRiβv输入回路:ebbebeebebi)1(RβiriRiriv电压增益:ebeLcebebLcbio)1()||(])1([)||(RβrRRβRβriRRiβAvvvA画小信号等效电路B确定模型参数已知,求rbe)mA()mV(26)1(200EQbeIrC增益(2)放大电路指标分析(可作为公式用)4.6.1共射-共基放大电路21o1oio1iovvvvvvvvvAAA)1(2be1be21be1L11βrrβrRβAvbe2Lc22be2L222)||('rRRβrRβAv其中be2Lc22be12be21)||()1(rRRβrβrβAv所以12β因为be1Lc21)||(rRRβAv因此组合放大电路总的电压增益等于组成它的各级单管放大电路电压增益的乘积。前一级的输出电压是后一级的输入电压,后一级的输入电阻是前一级的负载电阻RL。电压增益2be2L1βrRT1、T2构成复合管,可等效为一个NPN管(a)原理图(b)交流通路4.6.2共集-共集放大电路4.6.2共集-共集放大电路1.复合管的主要特性两只NPN型

1 / 99
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功