正交频分复用(OFDM)原理及相关分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

正交频分复用(OFDM)原理及其实现一、OFDM基本原理OFDM是一种无线环境下的高速传输技术,该技术的基本原理是将高速串行数据变换成多路相对低速的并行数据并对不同的载波进行调制。这种并行传输体制大大扩展了符号的脉冲宽度,提高了抗多径衰落的性能。传统的频分复用方法中各个子载波的频谱是互不重叠的,需要使用大量的发送滤波器和接受滤波器,这样就大大增加了系统的复杂度和成本。同时,为了减小各个子载波间的相互串扰,各子载波间必须保持足够的频率间隔,这样会降低系统的频率利用率。而现代OFDM系统采用数字信号处理技术,各子载波的产生和接收都由数字信号处理算法完成,极大地简化了系统的结构。同时为了提高频谱利用率,使各子载波上的频谱相互重叠(如图一所示),但这些频谱在整个符号周期内满足正交性,从而保证接收端能够不失真地复原信号。当传输信道中出现多径传播时,接收子载波间的正交性就会被破坏,使得每个子载波上的前后传输符号间以及各个子载波间发生相互干扰。为解决这个问题,在每个OFDM传输信号前面插入一个保护间隔,它是由OFDM信号进行周期扩展得到的。只要多径时延不超过保护间隔,子载波间的正交性就不会被破坏。图1正交频分复用信号的频谱示意图二、OFDM系统的实现由上面的原理分析可知,若要实现OFDM,需要利用一组正交的信号作为子载波。我们再以码元周期为T的不归零方波作为基带码型,经调制器调制后送入信道传输。OFDM调制器如图2所示。要发送的串行二进制数据经过数据编码器形成了M个复数序列,此复数序列经过串并变换器变换后得到码元周期为T的M路并行码,码型选用不归零方波。用这M路并行码调制M个子载波来实现频分复用。图2OFDM调制器在接收端也是由这样一组正交信号在一个码元周期内分别与发送信号进行相关运算实现解调,恢复出原始信号。OFDM解调器如图3所示。然而上述方法所需设备非常复杂,当M很大时,需要大量的正弦波发生器,滤波器,调制器和解调器等设备,因此系统非常昂贵。为了降低OFDM系统的复杂度和成本,我们考虑用离散傅立叶变换(DFT)和反变换(IDFT)来实现上述功能。如果在发送端对D(m)做IDFT,把结果经信道发送到接收端,然后对接收到的信号再做DFT,取其实部,则可以不失真地恢复出原始信号D(m)。这样就可以利用离散傅立叶变换来实现OFDM信号的调制和解调。实现框图如图4和图5所示。用DFT和IDFT实现的OFDM系统,大大降低了系统的复杂度,减小了系统成本,为OFDM的广泛应用奠定了基础。三、OFDM系统的性能特点通过各个子载波的联合编码,OFDM具有很强的抗衰落能力,同时也有很强的抗窄带干扰能力,因为这些干扰仅仅影响到很小一部分的子信道。OFDM系统可以有效地抗信号波形间干扰,适用于多径环境和衰落信道中的高速数据传输。OFDM信道利用率高,这点在频谱资源有限的无线环境中尤其重要。但是OFDM存在两个缺陷:对频率偏移和相位噪声比较敏感;峰值与平均值比相对较大,这个比值变大会降低射频发射器的功率效率。四、结束语本文较详细地叙述了OFDM技术的基本原理,实现和它的性能特点。OFDM由于其频谱利用率高、成本低等原因越来越受到人们的关注。现在OFDM技术得到了广泛应用,尤其是在移动通信领域,预计第三代以后的移动通信的主流技术将是OFDM技。OFDM技术的基本原理在传统的多载波通信系统中,整个系统频带被划分为若干个互相分离的子信道(载波)。载波之间有一定的保护间隔,接收端通过滤波器把各个子信道分离之后接收所需信息。这样虽然可以避免不同信道互相干扰,但却以牺牲频率利用率为代价。而且当子信道数量很大的时候,大量分离各子信道信号的滤波器的设置就成了几乎不可能的事情。上个世纪中期,人们提出了频带混叠的多载波通信方案,选择相互之间正交的载波频率作子载波,也就是我们所说的OFDM。这种“正交”表示的是载波频率间精确的数学关系。按照这种设想,OFDM既能充分利用信道带宽,也可以避免使用高速均衡和抗突发噪声差错。OFDM是一种特殊的多载波通信方案,单个用户的信息流被串/并变换为多个低速率码流,每个码流都用一个子载波发送。OFDM不用带通滤波器来分隔子载波,而是通过快速傅立叶变换(FFT)来选用那些即便混叠也能够保持正交的波形。OFDM是一种无线环境下的高速传输技术。无线信道的频率响应曲线大多是非平坦的,而OFDM技术的主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输。这样,尽管总的信道是非平坦的,具有频率选择性,但是每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽,因此就可以大大消除信号波形间的干扰。由于在OFDM系统中各个子信道的载波相互正交,它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时又提高了频谱利用率。OFDM技术属于多载波调制(Multi-CarrierModulation,MCM)技术。有些文献上将OFDM和MCM混用,实际上不够严密。MCM与OFDM常用于无线信道,它们的区别在于:OFDM技术特指将信道划分成正交的子信道,频道利用率高;而MCM,可以是更多种信道划分方法。OFDM技术的推出其实是为了提高载波的频谱利用率,或者是为了改进对多载波的调制,它的特点是各子载波相互正交,使扩频调制后的频谱可以相互重叠,从而减小了子载波间的相互干扰。在对每个载波完成调制以后,为了增加数据的吞吐量、提高数据传输的速度,它又采用了一种叫作HomePlug的处理技术,来对所有将要被发送数据信号位的载波进行合并处理,把众多的单个信号合并成一个独立的传输信号进行发送。另外OFDM之所以备受关注,其中一条重要的原因是它可以利用离散傅立叶反变换/离散傅立叶变换(IDFT/DFT)代替多载波调制和解调。OFDM增强了抗频率选择性衰落和抗窄带干扰的能力。在单载波系统中,单个衰落或者干扰可能导致整个链路不可用,但在多载波的OFDM系统中,只会有一小部分载波受影响。此外,纠错码的使用还可以帮助其恢复一些载波上的信息。通过合理地挑选子载波位置,可以使OFDM的频谱波形保持平坦,同时保证了各载波之间的正交。OFDM尽管还是一种频分复用(FDM),但已完全不同于过去的FDM。OFDM的接收机实际上是通过FFT实现的一组解调器。它将不同载波搬移至零频,然后在一个码元周期内积分,其他载波信号由于与所积分的信号正交,因此不会对信息的提取产生影响。OFDM的数据传输速率也与子载波的数量有关。OFDM每个载波所使用的调制方法可以不同。各个载波能够根据信道状况的不同选择不同的调制方式,比如BPSK、QPSK、8PSK、16QAM、64QAM等等,以频谱利用率和误码率之间的最佳平衡为原则。我们通过选择满足一定误码率的最佳调制方式就可以获得最大频谱效率。无线多径信道的频率选择性衰落会使接收信号功率大幅下降,经常会达到30dB之多,信噪比也随之大幅下降。为了提高频谱利用率,应该使用与信噪比相匹配的调制方式。可靠性是通信系统正常运行的基本考核指标,所以很多通信系统都倾向于选择BPSK或QPSK调制,以确保在信道最坏条件下的信噪比要求,但是这两种调制方式的频谱效率很低。OFDM技术使用了自适应调制,根据信道条件的好坏来选择不同的调制方式。比如在终端靠近基站时,信道条件一般会比较好,调制方式就可以由BPSK(频谱效率1bit/s/Hz)转化成16QAM-64QAM(频谱效率4~6bit/s/Hz),整个系统的频谱利用率就会得到大幅度的提高。自适应调制能够扩大系统容量,但它要求信号必须包含一定的开销比特,以告知接收端发射信号所应采用的调制方式。终端还要定期更新调制信息,这也会增加更多的开销比特。OFDM还采用了功率控制和自适应调制相协调工作方式。信道好的时候,发射功率不变,可以增强调制方式(如64QAM),或者在低调制方式(如QPSK)时降低发射功率。功率控制与自适应调制要取得平衡。也就是说对于一个发射台,如果它有良好的信道,在发送功率保持不变的情况下,可使用较高的调制方案如64QAM;如果功率减小,调制方案也就可以相应降低,使用QPSK方式等。自适应调制要求系统必须对信道的性能有及时和精确的了解,如果在差的信道上使用较强的调制方式,那么就会产生很高的误码率,影响系统的可用性。OFDM系统可以用导频信号或参考码字来测试信道的好坏。发送一个已知数据的码字,测出每条信道的信噪比,根据这个信噪比来确定最适合的调制方式。什么是OFDM?OFDM的英文全称为OrthogonalFre-quencyDivisionMultiplexing,中文含义为正交频分复用技术。这种技术是HPA联盟(HomePlugPowerlineAlliance)工业规范的基础,它采用一种不连续的多音调技术,将被称为载波的不同频率中的大量信号合并成单一的信号,从而完成信号传送。由于这种技术具有在杂波干扰下传送信号的能力,因此常常会被利用在容易受外界干扰或者抵抗外界干扰能力较差的传输介质中。其实,OFDM并不是如今发展起来的新技术,OFDM技术的应用已有近40年的历史,主要用于军用的无线高频通信系统。但是,一个OFDM系统的结构非常复杂,从而限制了其进一步推广。直到上世纪70年代,人们采用离散傅立叶变换来实现多个载波的调制,简化了系统结构,使得OFDM技术更趋于实用化。80年代,人们研究如何将OFDM技术应用于高速MODEM。进入90年代以来,OFDM技术的研究深入到无线调频信道上的宽带数据传输。目前OFDM技术已经被广泛应用于广播式的音频、视频领域和民用通信系统,主要的应用包括:非对称的数字用户环路(ADSL)、ETSI标准的数字音频广播(DAB)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)等。正交频分复用(OFDM)技术是一种多载波数字通信调制技术。它由多载波调制(MCM)技术发展而来。美国军方在上世纪60年代就建造了世界上第一个MCM系统,并随后衍生出采用多个子载波和频率重叠技术的OFDM系统。但在之后相当长的一段时间,OFDM技术的发展遇到了很多似乎难于解决的问题。首先,OFDM要求各个子载波之间相互正交,尽管理论上发现采用快速傅立叶变换(FFT)可以很好地实现这种调制方式,但实际上,如此复杂的实时傅立叶变换设备在当时是根本无法完成的。此外,发射机和接收机振荡器的稳定性以及射频功率放大器的线性要求等因素也都是OFDM技术实现的制约条件。20世纪80年代以来,大规模集成电路技术的发展解决了FFT的实现问题,随着DSP芯片技术的发展,格栅编码(TrellisCode)技术、软判决技术(SoftDecision)、信道自适应技术等的应用,OFDM技术开始从理论向实际应用转化。20世纪90年代,OFDM开始被欧洲和澳大利亚应用于广播信道的宽带数据通信、数字音频广播(DAB)、高清晰度数字电视(HDTV)和无线局域网(WLAN)等。此外,还由于其具有更高的频谱利用率和良好的抗多径干扰能力,也被看作第四代移动通信的核心技术之一。OFDM技术良好的性能使得它在很多领域得到了广泛的应用。欧洲的数字音频广播(DAB)系统使用的就是OFDM调制技术。其试验系统已在运行,并且明显地改善了移动中接收无线广播的效果,很快吸引了大量听众。欧洲的一些部门正在开发用于DAB的成套芯片,它将使OFDM接收机的价格大大降低,市场前景非常看好。很多国家的全数字高清晰度电视传输系统(DVB-T)也采用了OFDM技术。1997年,欧洲DVB-TCOFDM系统是欧洲数字电视广播(DVB)系列标准中的数字地面电视广播系统标准。该系统使用COFDM调制方式,把传输比特分割到数千计的低比特率子载波上。日本1999年提出的地面综合业务数字广播(ISDB-T)也采用OFDM技术,即:ISDB-TOFDM。从目前的研发情况来看,由于OFDM具有很高的频谱利用率和抗干扰能力,能够很好地满足电视系统的传输要求。在无线局域网领域,IEEE802.11a于1999

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功