界面化学的研究内容及应用前景

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

界面化学的研究内容及应用前景(中北大学化工与环境学院09040342)摘要界面化学是研究物质在多相体系中表面的特征和表面发生的物理和化学过程及其规律的科学。这就是说界面化学研究内容不仅仅局限于化学过程和规律,对界面体系特征和物理过程和规律也进行研究。界面化学在能源、材料、生物、化学制造和环境科学等领域具有广泛的应用,并渗透到国民经济的各个主要领域中。本文综述了我国界面化学所研究的内容,着重叙述了表面活性剂的相关情况及其发展方向展,另外,本文特别介绍了近10年所取得的成就,介绍了界面化学的研究新方法,以及新型两亲分子有序组合体的设计与构建、界面化学与有序分子膜、界面化学在微纳米功能材料合成中的应用新进展、界面化学在生物医药中的研究新进展等,并对该学科的发展前景与趋势进行了分析。关键词界面化学研究内容研究方法学科进展应用发展趋势前言界面是指物质相与相之间交界的区域,存在于两相之间,厚度约为几个分子层到几十分子层,它不同于几何中说“面”的概念,几何中的面是抽象得到的,没有厚度的,对于具体图形所限定的面还可以进行面积计算,这里的面是有厚度的,是具体物质相之间的交界区域。物质间的相界面有气液界面、气固界面、液固界面、液液界面、固固界面五种。习惯上将气相与液相、固相的界面称为表面,如固体表面、液体表面。其他的称为界面。界面化学是研究物质在多相体系中表面的特征和表面发生的物理和化学过程及其规律的科学。这就是说界面化学研究内容不仅仅局限于化学过程和规律,对界面体系特征和物理过程和规律也进行研究。界面化学是研究胶体分散体系和界面现象的一门科学,与能源、材料、生物、化学制造和环境科学有着密切的关系,并渗透到国民经济的各个主要领域中。所涉及到其中的一些重大科学问题,如土壤改良、功能与复合材料、三次采油、浆体的管道运输、人造血浆、药物缓释与定向、摩擦与润滑和油漆涂料等,与国家安全、能源开发、环境保护和人民生活等方面密切相关,因此在社会与经济可持续发展中具有重要的地位。界面化学与人们日常生活和工农业生产密不可分。像明矾净水、肥皂去污、人工降雨、原油去水……都是界面化学的研究内容。我国的界面化学的发展基本上是从解放后开始的,著名的化学家傅鹰院士是我国界面化学的主要奠基人,其对吸附理论的研究在国际上达到了很高的水平,推动了全国界面化学的发展。其后,赵国玺在表面活性剂物理化学基础研究和实际应用上,特别是在混合表面活性剂体系的研究中做出了突出贡献。顾惕人在表面活性剂界面吸附和表面膜方面,周祖康在表面活性剂胶束形成、转变及胶体体系流变学性质方面,马季铭在分散体系的流变学性质以及基于有序分子组合体模板的生物矿化材料的制备方面,杨孔章在功能性L-B膜的制备与应用方面,陈宗淇在分散体系的流变性及胶体的稳定性方面,王果庭在分散体系稳定性与油田化学品方面,李干佐在将表面活性剂应用于三次采油、油田开发方面,陈邦林在界面化学吸附及其在河口化学理论方面均做出了突出贡献。改革开放以来,特别是自1982年以来的30年,我国胶体与界面化学学科得到了长足发展,近10年发展尤为迅猛。30年来我国界面化学处于蓬勃发展的阶段。大批青年学者加入到胶体与界面化学的科学与技术研究队伍中,一批界面化学学者在国际上已经具有影响,进入本领域权威期刊,如《Adv.ColloidInterfaceSci.》、《Curr.Opin.ColloidInterfaceSci.》、《ACSAppl.Mater.&Interfaces》、《SoftMatter》、《Langmuir》、《J.ColloidInterfaceSci.》等的编辑和顾问编委的中国学者也在不断增多,表明了中国界面化学研究的进步和提高。研究论文的数量,特别是论文的水平均有很大提高,一批研究突破已经引起国际同行的密切关注并认可。2006年10月15至20日,第12届国际界面与胶体科学大会在北京国际会议中心隆重举行。本次会议充分代表了国际胶体与界面化学学科的研究水平,展示了各国学者的研究成果和最新进展,也是对中国界面科学家研究水平重视和承认的例证。近年来,由于功能材料、仿生学和生物医药等学科的迅速发展,要求在纳米尺寸的范围内进行分子组装和材料的排列,制备具有各种功能与结构的有序分子组合体和进行仿生合成,特别是与生命现象有关的超分子组装、新型表面活性剂有序聚集体的构建和分子间相互作用的研究方兴未艾。在这些领域,我国胶体与界面化学科学家均做出了一些突出的成绩。特别是在表面活性剂领域我国的学者们做出了卓越的贡献。1.表面活性剂1.1概述表面活性剂工业是本世纪30年代发展起来的一门新型化学工业。素有“工业味精”的美称,发达国家表面活性剂的产量逐年迅速增长,已成为国民经济的基础工业之一。美国是生产表面活性剂产量最大的国家。其品种约有1000种以上,日本表面活性剂的产量居世界第二位。我国表面活性剂工业的真正发展是从50年代末60年代初合成洗涤剂开始的。发展速度与品种较发达国家相差甚大。1990年我国表面活性剂约290种,产量约31.8万吨,目前的主要产品为阴离子和非离子型。表面活性剂工业正处于发展阶段。随着世界经济的发展以及科学技术领域的开拓,表面活性剂的发展更为迅猛。其应用领域从日用化学工业发展到石油、纺织、食品、农业、环境以及新型材料等方面,年产量以4%~5%的速度增长,1995年的产量已达900万吨,品种一万种以上,市场营销额为100亿美元,从而大大推动和促进了表面活性剂学科的发展。表面活性剂(surfactant),是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。表面活性剂一词来自英语surfactant。它实际上是短语surfaceactiveagent的缩合词。它还有一个名字叫做tenside。凡加入少量而能显著降低液体表面张力的物质,统称为表面活性剂。它们的表面活性是对某特定的液体而言的,在通常情况下则指水。它是一大类有机化合物,他们的性质极具特色,应用极为灵活、广泛,有很大的实用价值和理论意义。英国著名界面化学家Ckint说:“冰淇淋是我们最爱的食物;有了洗涤剂我们的生活才如此美好。若没有表面活性剂,这两样东西都不会有。这真是太可悲了。”1.2机理介绍表面活性剂一端是非极性的碳氢链(烃基),与水的亲和力极小,常称疏水基;另一端则是极性基团(如—OH、—COOH、—NH2、—SO3H等),与水有很大的亲和力,故称亲水基,总称“双亲分子”(亲油亲水分子)。为了达到稳定,表面活性剂溶于水时,可以采取两种方式:在液面形成单分子膜。将亲水基留在水中而将疏水基伸向空气,以减小排斥。而疏水基与水分子间的斥力相当于使表面的水分子受到一个向外的推力,抵消表面水分子原来受到的向内的拉力,亦即使水的表面张力降低。这就是表面活性剂的发泡、乳化和湿润作用的基本原理。在油-水系统中,表面活性剂分子会被吸附在油-水两相的界面上,而将极性基团插入水中,非极性部分则进入油中,在界面定向排列。这在油-水相之间产生拉力,使油-水的界面张力降低。这一性质对表面活性剂的广泛应用有重要的影响。形成“胶束”。胶束可为球形,也可是层状结构,都尽可能地将疏水基藏于胶束内部而将亲水基外露。如以球形表示极性基,以柱形表示疏水的非极性基,则单分子膜和胶束。如溶液中有不溶于水的油类(不溶于水的有机液体的泛称),则可进入球形胶束中心和层状胶束的夹层内而溶解。这称为表面活性剂的增溶作用。表面活性剂可起洗涤、乳化、发泡、湿润、浸透和分散等多种作用,且表面活性剂用量少(一般为百分之几到千分之几),操作方便、无毒无腐蚀,是较理想的化学用品因此在生产上和科学研究中都有重要的应用。在浓度相同时,表面活性剂中非极性成分大,其表面活性强。即在同系物中,碳原子数多的表面活性较大。但碳链太长时,则因在水中溶解度太低而无实用价值。1.3性质表面活性剂通过在气液两相界面吸附降低水的表面张力,也可以通过吸附在液体界面间来降低油水界面张力。许多表面活性剂也能在本体溶液中聚集成为聚集体。囊泡和胶束都是此类聚集体。表面活性剂开始形成胶束的浓度叫做临界胶束浓度或CMC。当胶束在水中形成,胶束的尾形成能够包裹油滴的核,而它们的(离子/极性)头能够形成一个外壳,保持与水接触。表面活性剂在油中聚集,聚集体指的是反胶束。在反胶束中,头在核,尾保持与油的充分接触。表面活性剂通常分为四大类:阴离子,阳离子,非离子和两性离子(双电子)。表面活性剂系统的热动力学很重要,不论是理论上还是实践上。因为表面活性剂系统代表的是介于有序和无序物质状态之间的系统。表面活性剂溶液可能含有有序相(胶束)和无序相(自由表面活性剂分子和/或离子)。比如,常用的洗涤剂能够提高水在土壤中的渗透能力,但是效果仅仅持续数日(许多标准洗衣粉含有一定量的化学品,比如钠和溴,由于它们会破坏植物,不适于土壤)。商业土壤润湿剂会持续起效果一段时间,最终还是会被微生物降解。然而,有一些会对水生物的生物循环产生影响,因此必须小心防止这些产品流入地表径流,过量产品不应该洗消。溶液中的正吸附:增加润湿性、乳化性、起泡性;固体表面的吸附:非极性固体表面单层吸附,极性固体表面可发生多层吸附1.4发展概况肥皂是使用最早的表面活性剂之一,公元前7~前6世纪已经开始使用。肥皂遇到硬水会产生沉淀,且在酸性溶液中不稳定。红油(又名土耳其红油),是蓖麻油硫酸化产物(阴离子表面活性剂),1875年首次由德国巴登苯胺纯碱公司合成,是第一个合成的表面活性剂,用于纺织和皮革工业。第一次世界大战时,德国研究成功从萘、丙醇或丁醇用发烟硫酸生产烷基萘磺酸盐,可以用来代替肥皂,因而节省了制皂用的动植物油脂。烷基萘磺酸盐的冼净能力虽然较差,但具有良好的润湿和渗透能力,且不受硬水或酸性溶液的影响,所以至今仍被广泛采用。1936年随着石油化工的发展,美国首先研究成功由苯和煤油制成烷基苯磺酸盐。后来,由于添加各种助剂和改进生产技术,以烷基苯磺酸盐为主要组分的合成洗涤剂,在应用性能和成本方面都比肥皂优越,开始大量在生产和生活中应用。此后,合成洗涤剂在洗涤用品总量中所占的比重逐年上升,1982年世界合成洗涤剂的产量已达28Mt,已经超过肥皂并继续增长。以合成洗涤剂为代表的表面活性剂的研究和生产发展迅速,现已成为重要的化工生产部门。表面活性剂的品种已有几千种。中国的表面活性剂和合成洗涤剂工业起始于50年代,尽管起步较晚,但发展较快。1995年洗涤用品总量已达到310万吨,仅次于美国,排名世界第二位。1.5分类表面活性剂的分类方法很多,根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等;根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等;有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重迭。因此,我们采用一种综合分类法,以表面活性剂的离子性划分,同时将一些属于某种离子类型、但具有其显著的化学结构特征,已发展成表面活性剂一个独立分支的品种单独列出。在基本不破坏分类系统性的前提下,使得分类更明确,并对表面活性剂各个近代发展分支有较为清晰的了解。按极性基团的解离性质分类如下:1.5.1阴离子表面活性剂肥皂类:系高级脂肪酸的盐,通式:(RCOOˉ)nM。脂肪酸烃R一般为11~17个碳表面活性剂肥皂的长链,常见有硬脂酸、油酸、月桂酸。根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。它们均有良好的乳化性能和分散油的能力。但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析。硫酸化物:主要是硫酸化油和高级脂肪醇硫酸酯类。磺酸化物:属于这类的有脂肪族磺酸化物、烷基芳基磺酸化物和烷基萘磺酸化物。它们的水溶性和耐酸耐钙、镁盐性比硫酸化物稍差,但在酸性溶液中不易水解。1.5.2阳离子表面活性剂该类表面活性剂起作用的部分是阳离子,因此称为阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功