等价关系:负数和零没有对数结论:指数式对数式(1)常用对数:log10N=lgN(2)自然对数:logeN=lnN(e=2.71828······)两个重要的对数:知识回顾baN(0,1,0)aaNlogaalog1a01(0,1,0)aaNlogaNb(,)(,)()(,)()()mnmnmnnaamnRamnRaamnRabnR指数运算法则知识回顾mnamnamnannab问题一、研究以下两组对数求值结论求值2log42log82log(48)2log(48)3log93log(927)3log(927)3log272log82log4+3log273log9+235235探究一、两个正数的积的对数,等于同一底数的这两个数的对数的和。------(积的对数)log()loglogaaaMNMN(1)(积的对数等于同底对数之和)即baNlogaNb(0,1,0)aaNlog()loglogaaaMNMN证明:pMaqNalogaMplogaNq设,,根据对数的定义得pqpqMNaaa所以,log(MN)logpqaaapq根据对数的定义得,log()loglogaaaMNMN所以,证明:log()loglogaaaMNMN2log(416)3(2)log(327)121(1)log(2)4(3)lg4lg2566(4)log12log3(积的对数)练习:例题讲解:lg5lg20lg(520)lg100222log4log162461422问题二、研究以下两组对数求值结论求值2log642log16264log16264log165log255log125525log125525log1252log162log64-5log255log125-64223-1探究二、两个正数的商的对数,等于同一底数的被除数的对数减去除数的对数。-----(商的对数)logloglogaaaMMNN即(2)(商的对数等于同底对数差)baNlogaNb(0,1,0)aaN证明:logloglogaaaMMNNpaMqaN,根据对数的定义得logaMplogaNq设,ppqqMaaNa所以,loglogpqaaMapqN根据对数的定义得,logloglogaaaMMNN所以,证明:logloglogaaaMMNN28(1)log433(2)log72log8(商的对数)练习:例题讲解:264(1)log422log64log462433(2)log5log1535log1531log3112问题三、研究以下两组数据求值结论求值3log923log412312log9_____32log42log431log92123log9323log4_____6611探究三、一个正数的幂的对数,等于幂指数乘以这个数的对数。------(幂的对数)loglogbaaMbM即(3)(幂的对数等于幂指数乘以此数的对数)baNlogaNb(0,1,0)aaN证明:loglogbaaMbMpaM证明:logaMp设,根据对数的定义得()bpbpbMaa所以,loglogbpbaaMapb根据对数的定义得loglogbaaMbM所以,loglogbaaMbM32log823(2)log275(4)lg102(3)lne351(1)log()25(幂的对数)练习:23log4例题讲解:23log833932632log4235log(5)65log(5)56log56513log()25253log5523log56625logbaalogabab对数的运算性质:log(MN)loglogaaaMNlogloglogaaaMMNNloglogbaaMbM0,10,0aaMN且对数运算性质的综合运用:269(1)log(93)55(1)log20log4131(4)lg100log8123(3)log(279)40.8(4)lg10lnlog1e2(2)lnloge1、例题讲解:2、练习:2699log9log3235242loga(M·N)=logaM十logaNNMloga=logaM-logaNlogaMn=nlogaM积、商、幂的对数运算法则:alog(MN)loglog()logloglog()loglog()aaaaabaaMNMMNNMbM1230,10,0aaMN且课堂小结课堂作业:P109练习2、习题1课后作业:本节练习册预习新课:§4.6对数函数性质补充:logaNaNlogloglogcacNNa2log3(2)24log5(1)422log3(3)223(4)log9log4(0,1;0;0,1)aaNcc练习:(证明)(证明)证明:log(0,1,0)aNaNaaN证明:logaNaxlogloglogaNaaxaloglogaaxNxNlogaNaN设在等式两边取对数,即所以,即证明:logloglogcacNNa(0,1,0,0,1)aaNcc证明:,则xaNlogaNx设loglogxccaNc等式两边取以为底的对数loglogccxaN即loglogccNxa所以,logloglogcacNNa即