硬件电路设置死区的方法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

硬件设置死区的方法控制过程如下:因为IPM控制输入低电平有效。平时CPU输出控制脚1处于高电平,逻辑或门输出高电平,IPM输入锁定。当CPU输出低电平有效时,高频瓷片电容通过电阻放电,逻辑或门输入脚2仍然维持高电平,逻辑或门输出高电平,IPM输入仍然锁定。当电容放电完毕,或门输入脚2变为低电平时逻辑输出才为低电平,IPM控制输入有效,因此,电容放电时间就是CPU控制输出到IPM控制输入有效的延时时间。当CPU控制输出关断即输出重新变为高电平时,尽管电容处于充电状态而使或门输入脚2处于低电平,逻辑或门输出仍然立即变为高电平,锁定IPM输入。上述电路只是六路IPM控制输入的其中一路,其他五路做同样处理,通过调整R、C的参数,就可以实现所需要的延时时间。下面是一相电路控制时序图:下面我们推导图3所示电路中电阻和电容的选择:根据电工学公式,由电阻、电容组成的一阶线性串联电路,电容电压Uc可以用下式表示:Uc=Uoexp(-t/τ)(1)τ为时间常数τ=RC在图3所示电路中,我们选择ST公司生产的高速CMOS或门电路,它的关门电平为1.35V(电源电压为4.5V),即当输入电压降至1.35/4.5U0=0.3U0时,输出电平转换有效,因此由式(1)可以推导出:td=-τln0.3=1.2RC(2)上式就是我们选择R、C值的指导公式。例如:需要延时时间为10us,选择精度为5%高频瓷片电容,容量为103P,则R=10*10e-6/1.2C=833Ω,这样R就可选择精度为1%、阻值为820Ω的金属膜电阻死区时间大,模块工作更加可靠,但会带来输出波形的失真及降低输出效率。死区时间小,输出波形要好一些,只是会降低可靠性,一般为us级。一般来说死区时间是不可以改变的,只取决于功率元件制作工艺!小结:按照上述方案设计的硬件延时电路,结构简单,成本低廉,可靠性极高,在实际使用时只需简单调换一下电阻的阻值就可实现对死区时间要求不同的IPM的控制。死区时间的设置图该电路的实验的不好,大头进的低电平高点,以致7414不能反向上面的一段时上升沿延时下面的一段时下降沿延时

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功