时间序列分析第四章

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第四章非平稳序列的确定性分析本章结构时间序列的分解1.确定性因素分解2.趋势分析3.季节效应分析4.综合分析5.X-11过程6.4.1时间序列的分解Wold分解定理HermanWold,(1908-1992),瑞典人1938年提出Wold分解定理。1960年提出偏最小二乘估计方法(PLS)Cramer分解定理HaraldCremer(1893-1985),瑞典人,斯德哥尔摩大学教授,Wold的指导教师。Wold分解定理(1938)对于任何一个离散平稳过程它都可以分解为两个不相关的平稳序列之和,其中一个为确定性的,另一个为随机性的,不妨记作其中:为确定性序列,为随机序列,它们需要满足如下条件(1)(2)(3)}{txtttVx}{tVt0jjtjt020,1jj),0(~2WNtstVEst,0),(ARMA模型分解ttBBx)()(确定性序列随机序列确定性序列与随机序列的定义对任意序列而言,令关于q期之前的序列值作线性回归其中为回归残差序列,。确定性序列,若随机序列,若tytytqtqttyyy1210}{t2)(qtVar2lim0qq)(lim2tqqyVarCramer分解定理(1961)任何一个时间序列都可以分解为两部分的叠加:其中一部分是由多项式决定的确定性趋势成分,另一部分是平稳的零均值误差成分,即}{txtttx确定性影响随机性影响为零均值白噪声序列)(ttaaB)(djjjt0对两个分解定理的理解Wold分解定理说明任何平稳序列都可以分解为确定性序列和随机序列之和。它是现代时间序列分析理论的灵魂,是构造ARMA模型拟合平稳序列的理论基础。Cramer分解定理是Wold分解定理的理论推广,它说明任何一个序列的波动都可以视为同时受到了确定性影响和随机性影响的综合作用。平稳序列要求这两方面的影响都是稳定的,而非平稳序列产生的机理就在于它所受到的这两方面的影响至少有一方面是不稳定的。本章结构时间序列的分解1.确定性因素分解2.趋势分析3.季节效应分析4.综合分析5.X-11过程6.4.2确定性因素分解传统的因素分解长期趋势循环波动季节性变化随机波动现在的因素分解长期趋势波动交易日季节性变化随机波动确定性时序分析的目的克服其它因素的影响,单纯测度出某一个确定性因素对序列的影响推断出各种确定性因素彼此之间的相互作用关系及它们对序列的综合影响本章结构时间序列的分解1.确定性因素分解2.趋势分析3.季节效应分析4.综合分析5.X-11过程6.4.3趋势分析目的有些时间序列具有非常显著的趋势,我们分析的目的就是要找到序列中的这种趋势,并利用这种趋势对序列的发展作出合理的预测常用方法趋势拟合法平滑法趋势拟合法趋势拟合法就是把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型的方法分类线性拟合非线性拟合线性拟合使用场合长期趋势呈现出线形特征模型结构2)(,0)(ttttIVarIEIbtax例4.1澳大利亚政府1981——1990年每季度的消费支出序列线性拟合模型参数估计方法最小二乘估计eviews命令:ls因变量常数自变^参数估计值2)(,0)(40,2,1,ttttIVarIEtIbtax12.89ˆ,69.8498ˆba拟合效果图eviews拟合过程导入数据序列支出(zc)对时间(t)进行线性回归分析回归参数估计和回归效果评价可以看出回归参数显著,模型显著,回归效果良好,序列具有明显线性趋势。运用模型进行预测绘制原序列和预测序列的线图原序列和预测序列的线图残差序列的曲线图非线性拟合使用场合长期趋势呈现出非线形特征参数估计指导思想能转换成线性模型的都转换成线性模型,用线性最小二乘法进行参数估计实在不能转换成线性的,就用迭代法进行参数估计常用非线性模型模型变换变换后模型参数估计方法线性最小二乘估计线性最小二乘估计--迭代法--迭代法--迭代法2ctbtaTtttabTttbcaTtbcateTttbcaT122ttttTTlnaalnbbln2ctbtaTttbaTt例4.2:对上海证券交易所每月末上证指数序列进行模型拟合eviews操作图1:导入数据图2:绘制曲线图可以看出序列不是线性上升,而是曲线上升,尝试用二次模型拟合序列的发展非线性拟合模型变换参数估计方法线性最小二乘估计:命令lsZScTT*T2ctbtaTt22tt图3:模型参数估计和回归效果评价因为该模型中T的系数不显著,我们去掉该项再进行回归分析。非线性拟合线性最小二乘估计:命令lsZScT*T拟合模型口径20952.02517.502tTt图4:新模型参数估计和回归效果评价拟合效果图平滑法平滑法是进行趋势分析和预测时常用的一种方法。它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律常用平滑方法移动平均法指数平滑法移动平均法基本思想假定在一个比较短的时间间隔里,序列值之间的差异主要是由随机波动造成的。根据这种假定,我们可以用一定时间间隔内的平均值作为某一期的估计值分类n期中心移动平均n期移动平均n期中心移动平均为偶数,为奇数,nxxxxxnnxxxxxnxntnttntntntnttntntt)2121(1)(1~2121222112112121tx2tx1tx1tx2tx5~2112ttttttxxxxxx5期中心移动平均n期移动平均tx1tx2tx3tx4tx5~1234ttttttxxxxxx)(1~11nttttxxxnx5期移动平均移动平均期数确定的原则事件的发展有无周期性以周期长度作为移动平均的间隔长度,以消除周期效应的影响对趋势平滑的要求移动平均的期数越多,拟合趋势越平滑对趋势反映近期变化敏感程度的要求移动平均的期数越少,拟合趋势越敏感移动平均预测)(1ˆ21nlTlTlTlTxxxnxilxilxxilTilTilT,,ˆ例4.3某一观察值序列最后4期的观察值为:5,5.5,5.8,6.2(1)使用4期移动平均法预测。(2)求在二期预测值中前面的系数等于多少?2ˆTx2ˆTxTx例4.3解(1)(2)在二期预测值中前面的系数等于45.548.54.556.5ˆ41ˆ6.542.68.54.5541ˆ21123211TTTTTTTTTTxxxxxxxxxx2112123121231ˆˆ41144511616TTTTTTTTTTTTTTTTxxxxxxxxxxxxxxxxTx165指数平滑法指数平滑方法的基本思想在实际生活中,我们会发现对大多数随机事件而言,一般都是近期的结果对现在的影响会大些,远期的结果对现在的影响会小些。为了更好地反映这种影响作用,我们将考虑到时间间隔对事件发展的影响,各期权重随时间间隔的增大而呈指数衰减。这就是指数平滑法的基本思想分类简单指数平滑Holt两参数指数平滑简单指数平滑基本公式等价公式221)1()1(~ttttxxxx1~)1(~tttxxx经验确定初始值的确定平滑系数的确定一般对于变化缓慢的序列,常取较小的值对于变化迅速的序列,常取较大的值经验表明的值介于0.05至0.3之间,修匀效果比较好。10~xx简单指数平滑预测一期预测值二期预测值期预测值l2211)1()1(~ˆTTTTTxxxxx1111212ˆˆ)1(ˆ)1()1(ˆˆTTTTTTTxxxxxxx2,ˆˆ1lxxTlT例4.4对某一观察值序列使用指数平滑法。已知,,平滑系数(1)求二期预测值。(2)求在二期预测值中前面的系数等于多少?tx10Tx5.10~1Tx25.02ˆTx2ˆTxTx例4.4解(1)(2)所以使用简单指数平滑法二期预测值中前面的系数就等于平滑系数3.10ˆˆ3.10~75.025.0~ˆ1211TTTTTTxxxxxx112)1(ˆˆTTTTxxxxTx25.0Holt两参数指数平滑使用场合适用于对含有线性趋势的序列进行修匀构造思想假定序列有一个比较固定的线性趋势,每期都递增r或递减r但由于随机因素影响,每期的递增或递减不会恒为r,而是随时间变化上下波动rxxtt1ˆ11ˆtttrxxHolt两参数指数平滑考虑用第t期的观察值和第t期估计值的加权平均数作为第t期的修匀值因为也是随机序列,为了让修匀序列更平滑,对也进行一次俢匀处理最终得到比较光滑的俢匀序列,就是holt两参数平滑公式1111)1()~~()~)(1(~ttttttttrxxrrxxx10)~)(1(ˆ)1(~11,ttttttrxxxxxtrtr11)1()~~(ttttrxxr初始值的确定平滑序列的初始值趋势序列的初始值10~xxnxxrn110Holt两参数指数平滑预测期预测值lTTlTrlxx~ˆ例4.5对北京市1978——2000年报纸发行量序列进行Holt两参数指数平滑。指定51259~10xx4325231230xxr15.01.0例4.5平滑效果图本章结构时间序列的分解1.确定性因素分解2.趋势分析3.季节效应分析4.综合分析5.X-11过程6.季节指数季节指数的概念所谓季节指数就是用简单平均法计算的周期内各时期季节性影响的相对数季节模型ijjijISxx季节指数的计算计算周期内各期平均数计算总平均数计算季节指数mknxxniikk,,2,1,1nmxxnimkik11mkxxSkk,,2,1,季节指数的理解季节指数反映了该季度与总平均值之间的一种比较稳定的关系如果这个比值大于1,就说明该季度的值常常会高于总平均值如果这个比值小于1,就说明该季度的值常常低于总平均值如果序列的季节指数都近似等于1,那就说明该序列没有明显的季节效应例4.6季节指数的计算4.3季节效应分析【例4.6】以北京市1995年——2000年月平均气温序列为例,介绍季节效应分析的基本思想和具体操作步骤。图1:建立月度数据新工作表图4:进行季节调整(移动平均法)图5:移动平均季节加法图6:12个月的加法调整因子图7:打开三个序列(季节调整序列、原序列、调整后序列)图8:三个序列(季节调整序列、原序列、调整后序列)取值时序图例4.6季节指数图图9:三个序列(季节调整序列、原序列、调整后序列)曲线图本章结构时间序列的分解1.确定性因素分解2.趋势分析3.季节效应分析4.综合分析5.X-11过程6.综合分析常用综合分析模型加法模型乘法模型混合模型ttttISTxttttISTx)())ttttttttITSxbITSxa例4.7对1993年——2000年中国社会消费品零售总额序列(数据见附录1.11)进行确定性时序分析。(1)绘制时序图(2)选择拟合模型长期递增趋势和以年为固定周期的季节波动同时作用于该序列,因而尝试使

1 / 101
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功