时间序列模型笔记ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归,p为自回归项;MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。所谓ARIMA模型,是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型。ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、自回归过程(AR)、自回归移动平均过程(ARMA)以及ARIMA过程。ARIMA模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。现代统计方法、计量经济模型在某种程度上已经能够帮助企业对未来进行预测。ARIMA模型预测的基本程序(一)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。一般来讲,经济运行的时间序列都不是平稳序列。(二)对非平稳序列进行平稳化处理。如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。(三)根据时间序列模型的识别规则,建立相应的模型。若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。(四)进行参数估计,检验是否具有统计意义。(五)进行假设检验,诊断残差序列是否为白噪声。(六)利用已通过检验的模型进行预测分析。用差分自回归滑动平均模型,即ARIMA(p,d,q)模型,对备件消耗进行预测。首先需要明确建立模型的前提是在预测的这段时间内,影响该类备件消耗量的主要因素不发生大变故。在此前提下,将备件消耗的历史统计数据视为一个时间序列,即为一组依赖于时间t的随机变量序列。这些变量间有依存性和相关性,并表现出一定的规律性,如能根据这些消耗数据建立尽可能合理的统计模型,就能用这些模型来解释数据的规律性,就可利用已得到的备件消耗数据来预测未来消耗数据,也就能得出备件需求做好的备件供应。备件消耗预测ARIMA(p,d,q)模型实质是先对非平稳的备件消耗历史数据Yt进行d(d=0,1,dots,n)次差分处理得到新的平稳的数据序列Xt,将Xt拟合ARMA(p,q)模型,然后再将原d次差分还原,便可以得到Y_t的预测数据。其中,ARMA(p,q)的一般表达式为:t1111......,tptpttqtqXXXtZ式中,前半部分为自回归部分,非负整数p为自回归阶数,1…p为自回归系数,后半部分为滑动平均部分,非负整数q为滑动平均阶数,1…q为滑动平均系数;Xt为备件消耗数据相关序列,εt为WN(0,σ2)。当q=0时,该模型成为AR(p)模型:当p=0时,该模型成为MA(q)模型:备件消耗预测建模流程通过建立ARIMA(p,d,q)模型进行备件消耗预测的基本流程,如下图(1)获取数据并进行预处理.收集装备使用阶段某备件消耗的数据序列,记为1,2,3,t,...YYYY,利用游程检验法来判断该序列是否为平稳序列,如为非平稳序列,用差分的方法,即:对序列进行平稳化预处理,每次差分后数据进行游程检验,直到差分所得数据可以通过平稳性检验,记为d次差分,得到新的平稳序列123,,,...XtdXXX,取前N组(或全部)数据作为观测数据,进行零均值化处理,即:,得到一组预处理后的新序列''tX。根据上述计算结果,并依据表1的模型识别原则,可以确定符合的模型。(3)参数估计和模型定阶参数估计和模型定阶是建立备件消耗预测模型的重要内容,二者相互影响。在上述模型识别的基础上,利用样本矩估计法、最小二乘估计法或极大似然估计法等对ARMA(p,q)的未知参数,即自回归系数、滑动平均系数以及白噪声方差进行估计,得出