浅谈光纤通信技术的特点和发展前景

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

浅谈光纤通信技术的特点和发展前景一,光纤通信技术光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。二,光纤通信的特点(1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。(2)损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。(3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。三,光纤通信技术发展的以及前景1,光纤通信的发展光纤通信的发展史虽然只有二三十年,但由于它无比的优越性,使它成为了现代化通信网络中最为重要的传输媒介。总体来说,光纤通信的发展大致分为4个阶段。第一阶段(1966——1976年)是冲基础研究到商业应用的开发时期。这个时期中,出现了短波长(850nm)低速率(34或45Mb/s)多模光纤通信系统,无中继传输距离约为10km。第二阶段(1976——1986年)是以提高传输速率和增加传输距离为研究目标的大力推广应用的大发展时期。在这个时期,光纤从多模发展到单模,工作波长从短波长(850nm)发展到长波(1310nm和1550nm),实现了工作波长为1310nm,传输速率为140—565Mb/s的单模光纤通信系统,无中继传输距离为50到100km。第三阶段(1986——1996年)是以超大容量超长距离为目标,全面深入开展新技术研究的事情。在这个时期,出现了1550nm色散位移单模光纤通信系统。采用外调制技术,传输速率可达2.5-10Gb/s,无中继传输距离可达100—150km,实验室可以达到更高水平。第四阶段(1996年至今)是采用光放大器,波分复用光纤通信系统的超长距离的光弧子通信系统的时期。具体来讲国外的发展状况:20世纪60年代中期,所研制的最好的光纤损耗在400dB以上。1966年英国标准电信研究所高锟及Hockham从理论上预言光纤损耗可降至20dB/km以下。日本于1969年研制出第一根通信用光纤损耗为100dB/km。1970年康宁公司(Corning)采用“粉末法”先后获得了损耗低于20dB/km和4dB/km的低损耗石英光纤。1974年贝尔实验室(Bell)采用改进的化学汽相沉积法制出性能优于康宁公司的光纤产品。到1979年,掺锗石英光纤在1.55µm处的损耗已经降到0.2dB/km,这一数值已经十分接近由Rayleigh散射所决定的石英光纤理论损耗极限。国内光纤通信的发展:1963年开始光通信的研究。1977年,第一根短波长(0.85mm)阶跃型石英光纤问世,损耗为300dB/km。1978年,阶跃光纤的衰减降至5dB/km。研制出短波长多模梯度光纤,即G.651光纤。1979年,研制出多模长波长光纤,衰减为1dB/km。建成5.7km、8Mb/s光通信系统试验段。1980年1300nm窗口衰减降至0.48dB/km,1550nm窗口衰减为0.29dB/km。1981年多模光纤活动连接器进入实用。1984年武汉、天津34Mb/s市话中继光传输系统工程建成(多模)。1990年,研制出G.652标准单模光纤,最小衰减达0.35dB/km。1992年降至0.26dB/km。2,光纤通信的发展前景(1)新一代光纤:随着社会发展的需要已经出现了两种不同的新型光纤,即非零色散光纤(G.655)和全波光纤。(2)超高速系统:传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,而如今要满足社会发展需要,光纤通信应该按照光的时分复用方式进行。(3)超大容量WDM系统:如果将多个发送波长适当错开的光源信号同时在一路光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。(4)全光网络:WDM波分复用技术的实用化,提供了利用光纤带宽的有效途径,使大容量光纤传输技术取得了突破性进展。点到点之间的光纤传输容量的提高,为高速大容量宽带综合业务网的传输提供了有效途径,而传输容量的飞速增长对现存看交换系统的发展产生了压力。全光网络是指信号只是在进出网络时才进行电/光和光/电的变换,而在网络中传输和交换的过程中始终以光的形式存在。因为在整个传输过程中没有电的处理,所以PDH、SDH、ATM等各种传送方式均可使用,提高了网络资源的利用率。结束语光纤通信的应用给人们带来了一场信息的革命。是整个社会进入了一个信息高速发展的时代。而光纤通信带给我们的不仅仅是高速,还有更为客观的前景,它将带给我们无尽的方便。电话网络系统,电视网络系统和计算机网络系统在不远的未来,即将由光纤通信的发展而更好的结合,那将是光纤通信给人们带来的第二次震撼。四,结束语从光纤通信问世到现在,光传输的速率以指数增长,光传输的速率在过去的10年中大约提高了100倍。层出不穷的光通信新技术将成为市场复苏的源泉,而人类对通信容量的无止境需求将是市场恢复的原动力。随着光通信技术进一步发展,必将对21世纪通信行业的进步,乃至整个社会经济的发展产生巨大影响。严宇2010301750005

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功