浅谈待定系数法在初中数学中的应用摘要待定系数法在初中数学中应用的非常广,学生在解答很多类的题型中都可以利用。本文对待定系数法的概念进行分析,并分析待定系数法在数学中的解题步骤,最后对待定系数法在初中数学中的具体应用进行分析,并对每种类型的题目都举例分析,在详细的解答过程中分析待定系数法在初中数学中的具体应用。关键词:待定系数法;初中数学;方程式目录摘要............................................................1引言............................................................3一、待定系数法的基本理论........................................3(一)待定系数法的定义......................................3(二)待定系数法的解题基本步骤..............................3二、待定系数法在初中数学解题中的应用............................4(一)待定系数在因式分解中的应用............................4(二)待定系数法在求函数解析式中的应用......................5(三)待定系数法在数列中的应用..............................8(四)待定系数在解方程中的应用.............................10(五)待定系数在证明题中的应用.............................11(六)在求数列通项公式中的应用.............................11(七)待定系数在几何中的应用...............................12三、总结.......................................................16参考文献.......................................................17引言在初中数学解题的过程中,很多题目如果采用一种巧妙的解答方式,可以省去很多的时间,改变传统的解题方法有助于帮助学生获得高分。待定系数法在初中数学解题中应用的非常多,很多题目都能运用此方法,从而轻松解题,待定系数法是众多数学方法中易于掌握并行之效的方法。待定系数法是一种重要的数学方法,它是在知道问题答案形式的前提下,通过引入一些待定的系数,转化为方程组来解决的一种解题思路,从而使原有的问题转化为较简单的、易解决的问题的方法。我们通常所指的待定系数法,其实就是待定常数法,所求解的系数为常数。其实待定系数法还应该包含一层含义,就是所要求解的系数有可能不是一个常数,而是一个函数。本文将在介绍狭义待定系数法的基础上,对其做一定的推广。一、待定系数法的基本理论(一)待定系数法的定义待定系数法的定义是指利用已知的条件来确定某一个数学表达式中的待定参数的值或一个解析式,从而计算出该题答案的一种方法。更广泛地说,是要确定变量间的函数关系,设出某些未知数,然后根据所给条件来确定这些未知数,使问题得到解决的方法。其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件:对于一个任意的a值,都有f(a)=g(a);或者两个多项式各同类项的系数对应相等。(二)待定系数法的解题基本步骤待定系数法用来解题,必须要采用一定的解题步骤来解题,解题的关键就是利用好已知的参数,正确的列出方程式从而解答问题。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决。使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。打个比方,在求圆锥曲线的方程时,可以采用待定系数法来求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。本文举例说明待定系数法在数学中不同领域的应用。二、待定系数法在初中数学解题中的应用在初中数学解题中,待定系数法应用的非常广,能将一些难的题目巧妙的解答出来,下面着重介绍待定系数法在初中数学中不同类型题目中的具体应用:(一)待定系数在因式分解中的应用因式分解采用传统的方法,步骤多,而且解题过程繁琐,如果采用待定系数法来解答因式分解题目能减少很多的步骤,如果采用我们平时所运用的“提公因式“”分组分解”“配方法“”十字相乘法”不一定管用。而待定系数法却可以轻松解决这类题目。例1:分解因式:x3-5x2+9x-6分析:这道题目是一道高次多项式的因式分解,用我们常规的办法很难奏效了。我们观察到,里面有一常数6,6有约数±1,±2,±3,±6。分别代入原式,若值为0,则可找到一次因式,然后用除法或待定系数法,求另一个因式。通过带入计算,当x=0时,原式=0,即是说该多项式有一个因式(x-2)。现在我们可以设原式=(x-2)(ax2+bx+c),这里产生了三个待定系数———a、b、c。我们只需把它展开得到ax3+(b-2a)x2+(c-2b)x-2c,对照系数相等就可以得到a=1,b-2a=-5,c-2b=9,-2c=-6,解之得a=1,b=-3,c=3,所以原式=(x-2)(x2-3x+3)。例2:分解因式3x2+5xy-2y2+x+9y-4解:由于3x2+5xy-2y2=(3x-y)(x+2y)故可设3x2+5xy-2y2+x+9y-4=(3x-y+a)(x+2y+b)=3x2+5xy-2y2+(a+3b)x+(2a-b)y+ab比较两边系数,得a+3b=1(1)2a-b=9(2)ab=-4(3)由(1),(2)联立得a=4,b=-1,代入(3)式适合。所以,原式=(3x-y+4)(x+2y-1)在分解复杂的多项式时,主要是根据两多项式f(x)g(x),则它们同次的对应项系数一定相等,利用这个结论将因式分解的问题转化为解方程组,即求待定系数的问题来解决。(二)待定系数法在求函数解析式中的应用待定系数法是解决求函数解析式问题的常用方法,求函数解析式是初中阶段待定系数法的一个主要用途。确定直线或曲线方程就是要确定方程中x的系数与常数,我们常常先设它们为未知数,根据点在曲线上,点的坐标满足方程的关系,将已知的条件代入方程,求出待定的系数与常数。这是平面解析几何的重要内容,是求曲线方程的有效方法。初中阶段主要有正比例函数、一次函数、反比例函数、二次函数这几类函数,前面三种分别可设y=kx,y=kx+b,kyx的形式(其中k、b为待定系数,且k≠0)。而二次函数可以根据题目所给条件的不同,设成一般式y=ax2+bx+c(a、b、c为待定系数),顶点式y=a(x-h)2+k(a、k、h为待定系数),交点式y=a(x-x1)(x-x2)(a、x1、x2为待定系数)三类形式。根据题意(可以是语句形式,也可以是图象形式),确定出a、b、c、k、x1、x2等待定系数,求出函数解析式。典型例题:例1:无论a取什么实数,点P(a-1,2a-3)都在直线l上,Q(m,n)是直线l上的点,则(2m-n+3)2的值等于▲.【考点】待定系数法,直线上点的坐标与方程的关系,求代数式的值。【分析】∵由于a不论为何值此点均在直线l上,∴令a=0,则P1(-1,-3);再令a=1,则P2(0,-1)。设直线l的解析式为y=kx+b(k≠0),∴kb3b1,解得k2b1。∴直线l的解析式为:y=2x-1。∵Q(m,n)是直线l上的点,∴2m-1=n,即2m-n=1。∴(2m-n+3)2=(1+3)2=16。例2:如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.【答案】解:(1)设直线AB的解析式为y=kx+b,∵直线AB过点A(1,0)、点B(0,﹣2),∴kb0b=2,解得k2b=2。∴直线AB的解析式为y=2x﹣2。(2)设点C的坐标为(x,y),∵S△BOC=2,∴12•2•x=2,解得x=2。∴y=2×2﹣2=2。∴点C的坐标是(2,2)。【考点】待定系数法,直线上点的坐标与方程的关系。【分析】(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣2)分别代入解析式即可组成方程组,从而得到AB的解析式。(2)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=2求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标。例3:游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水﹣﹣清洗﹣﹣灌水”中水量y(m3)与时间t(min)之间的函数关系式.(1)根据图中提供的信息,求整个换水清洗过程水量y(m3)与时间t(min)的函数解析式;(2)问:排水、清洗、灌水各花多少时间?【答案】解:(1)排水阶段:设解析式为:y=kt+b,∵图象经过(0,1500),(25,1000),∴b=150025k+b=1000,解得:k=20b=1500。∴排水阶段解析式为:y=﹣20t+1500。清洗阶段:y=0。灌水阶段:设解析式为:y=at+c,∵图象经过(195,1000),(95,0),∴195a+c=100095a+c=0,解得:a=10b=950。∴灌水阶段解析式为:y=10t﹣950。(2)∵排水阶段解析式为:y=﹣20t+1500,∴令y=0,即0=﹣20t+1500,解得:t=75。∴排水时间为75分钟。清洗时间为:95﹣75=20(分钟),∵根据图象可以得出游泳池蓄水量为1500m3,∴1500=10t﹣950,解得:t=245。故灌水所用时间为:245﹣95=150(分钟)。【考点】一次函数的应用,待定系数法,直线上点的坐标与方程的关系。【分析】(1)根据图象上点的坐标利用待定系数法分别得出排水阶段解析式,以及清洗阶段:y=0和灌水阶段解析式即可。(2)根据(1)中所求解析式,即可得出图象与x轴交点坐标,即可得出答案。(三)待定系数法在数列中的应用待定系数法在解决初中数列题目中应用的非常广,无论的填空题还是应用题,采用待定系数法都能快速的解答出答案。对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。广泛应用于多项式的因式分解,求函数的解析式和曲线的方程等。这里谈谈利用待定系数法解决数列中已知递推关系式求通项的一些解法,供大家参考:一、形如dcaann1的数列求通项,可以通过xacxann1的形式,利用待定系数法求出x的值,转化为公比是c的等比数列求解。例3.已知数列na满足23,111nnaaa,求通项na;解:∵231nnaa,∴设xaxann31,则1x∴1311nnaa∴1na是公比为3的等比数列,首项是211a∴1321nna∴*,1321Nnann二、形如nnndmcaa1的数列求通项,当dc时,可以通过nnnndxacdxa11的形式,利用待定系数法求出x的值,转化为公比是c的等比数列求解;当dc时,转化为等差数列求解。例2.①已知数列na满足nnnaaa23,111,求通项na;∵nnnaa231∴设nnnnxaxa23211,则