浅谈移动闭塞与列控

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

移动闭塞与列控摘要:信号系统在城市轨道交通中占有重要地位,它是保障轨道交通系统安全与高效运行的重要手段。关键字:移动闭塞列车控制1闭塞制式闭塞就是用信号或凭证,保证列车按照空间间隔制运行的技术方法。空间间隔制就是前行列车和追踪列车之间必须保持一定距离的行车方法。从各种不同的角度闭塞可以有各种不同的分类,总的说可分站间闭塞和自动闭塞两大类。1.1站间闭塞站间闭塞就是两站间只能运行一列车,其列车的空间间隔为一个站间。按技术手段和闭塞方法又可分为:电话闭塞、路签闭塞,路牌闭塞、半自动闭塞、自动站间闭塞。1.2自动闭塞从保证列车运行而采取的技术手段角度来看,自动闭塞可分两大类:传统的自动闭塞和装备列车运行自动控制系统的自动闭塞。从闭塞制式的角度来看,装备列车运行控制自动的自动闭塞可分为三类:固定闭塞、准移动闭塞(含虚拟闭塞)和移动闭塞固定闭塞:列控系统采取分级速度控制模式时,采用固定闭塞方式。运行列车间的空间间隔是若干个闭塞分区,闭塞分区数依划分的速度级别而定。一般情况下,闭塞分区是用轨道电路或计轴装置来划分的,它具有列车定位和占用轨道的检查功能。广州地铁三、四号线采用计轴方式分区间的。当采用滞后型阶梯式控制模式时,需要增加一个闭塞分区作保护区段,所以运行列车间的空间间隔就大一点,如图1.1所示图1.1准移动闭塞:准移动闭塞方式的列控系统采取目标距离控制模式(又称连续式一次速度控制)。目标距离控制模式根据目标距离、目标速度及列车本身的性能确定列车制动曲线,不设定每个闭塞分区速度等级,采用一次制动方式。准移动闭塞的追踪目标点是前行列车所占用闭塞分区的始端,当然会留有一定的安全距离,而后行列车从最高速开始制动的计算点是根据目标距离、目标速度及列车本身的性能计算决定的。目标点相对固定,在同一闭塞分区内不依前行列车的走行而变化,而制动的起始点是随线路参数和列车本身性能不同而变化的。空间间隔的长度是不固定的,由于要与移动闭塞相区别,所以称为准移动闭塞。显然其追踪运行间隔要比固定闭塞小一些。一般情况下,闭塞分区是用轨道电路或计轴装置来划分的,它具有列车定位和占用轨道的检查功能。如图1.2所示。图1.2虚拟闭塞:是准移动闭塞的一种特殊方式,它不设轨道占用检查设备,采取无线定位方式来实现列车定位和占用轨道的检查功能,闭塞分区是以计算机技术虚拟设定的。如图1.3所示。图1.3移动闭塞:移动闭塞方式的列控系统也采取目标距离控制模式(又称连续式一次速度控制)。目标距离控制模式根据目标距离、目标速度及列车本身的性能确定列车制动曲线,采用一次制动方式。移动闭塞的追踪目标点是前行列车的尾部,当然会留有一定的安全距离,后行列车从最高速开始制动的计算点是根据目标距离、目标速度及列车本身的性能计算决定的。目标点是前行列车的尾部,与前行列车的走行和速度有关,是随时变化的,而制动的起始点是随线路参数和列车本身性能不同而变化的。空间间隔的长度是不固定的,所以称为移动闭塞。其追踪运行间隔要比准移动闭塞更小一些。移动闭塞一般采用无线通信和无线定位技术来实现。如图1.4所示。图1.42.列控系统的速度控制模式列车运行自动控制系统ATC(AutomaticTrainControl)就是对列车运行全过程或一部分作业实现自动控制的系统。其特征为:列车通过获取的地面信息和命令,控制列车运行,并调整与前行列车之间必须保持的距离。列车运行自动控制系统(简称列控系统)是保证列车按照空间间隔制运行的技术方法,它是靠控制列车运行速度的方式来实现的。目前在城市轨道交通中使用的信号系统,大多应用于80km/h以下的轨道交通工程中:自动化信号系统由ATP/ATO、联锁以及ATS三个子系统构成,即列车超速防护系统ATP(AutomaticTrainProtection);列车自动驾驶系统ATO(AutomaticTrainOperation);列车自动监控系统ATS(AutomaticTrainSupervision)。ATP子系统列车自动保护(ATP)子系统的主要功能是监督及控制列车在安全状态下运行,应满足故障-安全原则。为了确保线路列车安全、高速、高效地运行,必须装备ATP子系统。ATO子系统ATO子系统是自动控制列车运行的设备。在ATP的保护下,根据ATS的指令实现列车的自动驾驶,能够自动完成对列车的启动、牵引、巡航、惰行和制动的控制,确保达到设计间隔及旅行速度。轨道交通系统升级为列车自动运行ATO子系统,能使整个列车自动控制系统的优越性充分发挥出来,使轨道交通的管理水平上一个档次。特别是在高密度、高速度运行的轨道交通系统中,满足高水平的列车运行自动调整,节约能源,规范对列车运行的操作控制,减轻司机的劳动强度,提高列车正点率,保证运营指针的实现,实现无人驾驶折返、车站站台精确停车控制,提高旅客乘座的舒适度都起着非常重要的作用。ATS子系统中央列车监控系统在ATP子系统的支持下完成对全线列车运行的自动管理和监控。联锁子系统在有道岔车站和车辆段里,联锁设备是实现道岔、信号机、轨道电路间的正确联锁关系及进路控制的安全设备。联锁设备是自动化信号系统的重要环节,是ATP子系统的重要组成部分,是确保行车安全的基础设备,必须符合故障-安全原则及必要的设备冗余。2按闭塞制式分类目前用于城市轨道交通系统的闭塞方式有三种:固定闭塞、准移动闭塞和移动闭塞。1)基于传统的音频轨道电路的固定闭塞ATP系统固定闭塞又称分级速度控制方式或台阶式速度控制模式。其特点是采用固定划分区段的轨道电路,提供分级速度信息,实施台阶式的速度监督,使列车由最高速度逐步降至零。列车超速时由设备自动实施最大常用制动或紧急制动,使列车安全停车。这种控制模式只需获得轨道电路提供的速度信息即可完成列车超速防护,其制动安全性由合理安排自动闭塞分区长度来保证。这种方式所需传输的的信息量少,对应每个闭塞分区只能传送一个信息代码,即该区段所规定的最大速度码或入口/出口速度命令码,系统构成简单,设备也不复杂,因此成本低,列车速度监控采用的是闭塞分区入口/出口检查方式。(1)出口检查方式(ATP),在闭塞分区入口给出列车限制速度值,监控列车在本闭塞分区不超过限制速度,采取人控优先方法,控制列车在出口的速度不超过下一闭塞分区的限制速度。如超速,即强迫制动,见下图。采用这种控制方式,列车速度的调整主要依靠司机,只是在司机操作失误时,设备才起作用。(2)入口检查方式(ATC),在自动闭塞分区入口处给出列车限制速度限制值,控制列车到出口时不超过限制速度。见下图。2)基于报文式轨道电路的准移动闭塞ATP系统一般采用数字式音频无绝缘轨道电路、音频无绝缘轨道电路+感应电缆环线或计轴+感应电缆环线方式作为列车占用监测和ATP信息传输媒介,具有较大的信息传输量和较强的抗干扰能力。通过音频轨道电路的发送设备向车载设备提供目标速度、目标距离、线路状态(曲线半径、坡道等信息)等信息,ATP车载设备结合固定的车辆性能信息计算出适合本列车运行的速度/距离曲线,保证列车在速度/距离曲线下有序运行,提高了线路的利用率。准移动闭塞ATP系统采用速度/距离曲线的列控方式,提高了列车运行的平稳性,列车追踪运行的最小安全间隔较固定闭塞短,对提高区间通过能力有利。为保证列车正常运行,前后列车之间至少隔开一个轨道区段加一个制动距离和保护区段:3)基于通信的移动闭塞ATP系统前两种闭塞制式均属于基于轨道电路的ATP系统。基于通信的移动闭塞ATP系统不依靠轨道电路,而是采用交叉感应电缆环线、漏缆、裂缝波导管以及无线电台等方式实现车地、地车间双向数据传输,监测列车位置使地面信号设备可以得到每一列车连续的位置信息和列车运行其它信息,并据此计算出每一列车的运行权限,并动态更新,发送给列车,列车根据接收到的运行权限和自身的运行状态计算出列车运行的速度曲线,车载设备保证列车在该速度曲线下运行,ATO子系统在ATP保护下,控制列车的牵引、巡航及惰行、制动。追踪列车之间应保持一个“安全的距离”。这个最小安全距离是指后续列车的指令停车点和前车尾部的确认位置之间的动态距离。这个安全距离允许在一系列最不利情况存在时,仍能保证安全间隔。列车安全间隔距离信息是根据最大允许车速、当前停车点位置、线路等信息计算出的。信息被循环更新,以保证列车不断收到实时信息。因此在保证安全的前提下,能最大程度地提高区间通过能力。与基于轨道电路的闭塞制式相比,移动闭塞制式具有以下主要特点:实现车地双向、实时、高速度、大容量的信息传输列车定位精度高列车运行权限更新快不受牵引回流的干扰轨旁设备简单,可靠性高缩短列车追踪间隔,提高通过能力能适应不同性能列车的运行为保证列车正常运行,前后列车之间至少隔开一个制动距离和保护区段列车超速防护系统ATP是列车运行自动控制系统ATC的核心组成部分,所以通常提及的列车运行自动控制系统ATC实际上是指列车超速防护系统ATP。以下介绍的列车运行自动控制系统ATC主要也是指列车超速防护系统ATP部分。从速度控制方式角度,对列车运行自动控制分为以下几种模式:2.1分级速度控制分级速度控制:以一个闭塞分区为单位,根据列车运行的速度分级,对列车运行进行速度控制。分级速度控制系统的列车追踪间隔主要与闭塞分区的划分、列车性能和速度有关,而闭塞分区的长度是以最坏性能的列车为依据并结合线路参数来确定的,所以不同速度列车混合运行的线路采用这种模式能力是要受到较大的影响。分级速度控制又分为阶梯式和分段曲线式。①阶梯式分级速度控制阶梯式分级速度控制又分为超前式和滞后式。一个闭塞分区的进入速度称为入口速度,驶离速度称为出口速度。超前速度控制方式又称为出口速度控制方式,给出列车的出口速度值,控制列车不超过出口速度。日本ATC采取超前式速度控制方式,采用设备控制优先的方法。如图2.1上图所示,阶梯式实线为超前式速度控制线,粗虚线为列车实际减速运行线,从最高速至零速的列车实际减速运行线为分段曲线组成的一条不连贯曲线组合。因为列车驶出每一个闭塞分区前必须把速度降至超前式速度控制线以下,不然设备自动引发紧急制动,所以超前对出口速度进行了控制,不会冒出闭塞分区。滞后速度控制方式又称为入口速度控制方式,给出列车的入口速度值,监控列车在本闭塞分区不超过给定的入口速度值,采取人控优先的的方法,控制列车不超过下一闭塞分区入口速度值。法国TVM-300列控系统采用人控优先的方法,进行滞后速度控制。因为在每一个闭塞分区列车速度只要不超过给定的入口速度值,就不会碰滞后式速度控制线,考虑万一列车失控,在本闭塞分区的出口即下一闭塞分区的入口处的速度超过了给定的入口速度值,碰撞了滞后式速度控制线,即所谓撞墙,此时触发设备自动引发紧急制动,此时列车必然会越过第一红灯进入下一闭塞分区,如此必须要增加一个闭塞分区作为安全防护区段,俗称双红灯防护。如图2.1下图所示,粗虚线为列车实际减速运行线,从最高速至零速的列车实际减速运行线为分段曲线组成的一条不连贯曲线组合;细虚线为撞墙后的紧急制动曲线。图2.1阶梯式分级速度控制从上述可知,阶梯式分级速度控制,只是对每一个闭塞分区的入口速度或出口速度进行控制,对列车速度控制的不是连续的,因此地对车载所需要的信息量是较少的,TVM-300系统地对车实时传输18个信息,设备相应简单些。②曲线式分级速度控制曲线式分级速度控制根据列车运行的速度分级,每一个闭塞分区给出一段速度控制曲线,对列车运行进行速度控制。法国TVM430系统采取曲线式分级速度控制方式。如图2.2所示,粗实线为曲线式分级速度控制线,从最高速至零速的列车控制减速线为分段曲线组成的一条不连贯曲线组合,列车实际减速运行线只要在控制线以下就可以了,万一超速碰撞了速度控制线,设备自动引发紧急制动,因为速度控制是连续的,所以不会超速太多,紧急制动的停车点不会冒出闭塞分区,可以不需增加一个闭塞分区作为安全防护区段,设计时当然要考虑留有适当的安全距离。列控设备给出的分段的制动速度控制曲线是根据每一个闭塞分区的线路参数和列车自身的性能计算而定,闭塞分区的线路参数可以通过地

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功