浙教版2016年中考模拟数学试卷(一)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2015-----2016年中考模拟(一)一、选择题1.下列四个几何体中,左视图为圆的是()ABCD2.在下列调查中,适宜采用全面调查的是()A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率3.若反比例函数kyx的图象经过点(2,-1),则该反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限4.若一组数据3,x,4,5,6的众数是6,则这组数据的中位数为()A.3B.4C.5D.65.把多项式228x分解因式,结果正确的是()A.22(8)xB.22(2)xC.2(2)(2)xxD.42()xxx6.二次函数2(3)4yx,则点M的坐标可能是()A.(1,0)B.(3,0)C.(-3,0)D.(0,-4)7.如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cmB.52cmC.5.5cmD.1cm8.如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O,当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为()A.6.5B.6C.5.5D.59.有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。”乙说:“两项都参加的人数小于5人。”甲、乙两人的说法,有下列四个命题,其中真命题的是(B)A.若甲对,则乙对;B.若乙对,则甲对;C.若乙错,则甲错;D.若甲错,则乙对10.已知抛物线y=k(x+1)(x﹣)与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是(C)2·1·c·n·j·yA.2B.3C.4D.5二.填空题11.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,从中任意抽出一张,则抽出的数字是奇数的概率是12.在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是13.如图,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置甲:路桥区A处的坐标是(2,0)乙:路桥区A处在椒江区B处南偏西30°方向,相距16km则椒江区B处的坐标是14.关于x的方程210mxxm,有以下三个结论:①当m=0时,方程只有一个实数解②当0m时,方程有两个不等的实数解③无论m取何值,方程都有一个负数解,其中正确的是(填序号)15.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个六边形的边长最大时,AE的最小值为16.抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,点C在直线x=2上且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为.com三.解答题17.甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)求点M(x,y)在函数的图象上的概率;(2)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.18.如果抛物线cbxaxy2过定点M(1,1),则称此抛物线为定点抛物线。(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式。小敏写出了一个答案:4322xxy,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线122cbxxy,求该抛物线顶点纵坐标的值最小时的解析式,请你解答。19.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且ECDE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)20.如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1)填空:AD=(cm),DC=(cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(参考数据:sin75°=624,sin15°=624)21.如图,在多边形ABCDE中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,过点E作EF∥CB交AB于点F,FB=1,过AE上的点P作PQ∥AB交线段EF于点O,交折线BCD于点Q,设AP=x,PO.OQ=y(1)①延长BC交ED于点M,则MD=,DC=②求y关于x的函数解析式;(2)当1(0)2axa时,96ayb,求a,b的值;(3)当13y时,请直接写出x的取值范围22.如图1,已知A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为AB=.如图2,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为.综合应用:如图3,⊙P与x轴相切原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.①证明AB是⊙P的切点;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙O的方程;若不存在,说明理由.23.如图1,在△ABC中,∠C=90°,点D在AC上,且CDDA,DA=2.点P、Q同时从D点出发,以相同的速度分别沿射线DC、射线DA运动。过点Q作AC的垂线段QR,使QR=PQ,连接PR.当点Q到达A时,点P、Q同时停止运动。设PQ=x.△PQR和△ABC重合部分的面积为y.y关于x的函数图像如图2所示(其中0x≤78,78x≤m)(1)填空:n的值为___________;(2)求y关于x的函数关系式,并写出x的取值范围。图1图2备用图1备用图2

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功