机械工程前沿之精密超精密加工技术摘要:近些年,随着社会经济的不断发展,精密加工和超精密加工技术已成为机械制造技术的前沿标志。它反映着一个工业国家机械加工的水平,它是六十年代应电子、计算机、宇航及激光尖端技术的发展而发展起来的一门新兴工艺技术。在三十年的时间里,利用近代先进的技术和工艺使机械加工精度提高了一个数量级,目前正从微米、亚微米向纳米级精度迈进。提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。现如今,无论是科研领域还是生产领域,这项技术都得到了必要的应用。这项技术的重要性是不言而喻的,直接关系到工艺事业的发展进程。本文从精密超精密加工技术的相关理论、发展现状、运用三个角度,对该问题进行深入地分析与研究。Abstract:Inrecentyears,withthecontinuousdevelopmentofsocialeconomy,precisionmachiningandultraprecisionmachiningtechnologyhasbecomethefrontierofmechanicalmanufacturingtechnology.Itreflectsthelevelofmechanicalprocessinginanindustrialcountry,whichisanewtechnologydevelopedbythedevelopmentofelectronic,computer,spaceandlasercuttingtechnologyinthesixtys.Inthethirtyyears,theuseofmodernadvancedtechnologyandtechnologytoimprovetheaccuracyofmechanicalprocessinganorderofmagnitude,isnowbeingfromthemicron,submicrontonanometerlevelaccuracy.Improvingmanufacturingaccuracycanimprovetheperformanceandqualityoftheproduct,improvethestabilityandreliabilityoftheproduct,promotetheminiaturizationoftheproduct,strengthentheexchangeofparts,improvetheproductionefficiency,andpromotetheautomaticassembly.Now,whetheritisscientificresearchorproductionareas,thetechnologyhasbeenthenecessaryapplication.Theimportanceofthistechnologyisself-evident,directlyrelatedtotheprocessofdevelopmentoftheprocess.Thispaperanalyzesandstudiestheproblemfromthreeaspects:thetheory,developmentstatusandapplicationofprecisionmachiningtechnology.关键词:精密加工、超精密加工、切削、精度1精密与超精密加工技术理论众所周知,加工是一个非常宽泛的词汇。通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1µ;m,表面粗糙度为Ra0.1~0.01µ;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。普通加工是指一般技术水平就完成的精度;精密加工是指通过高精度的加工工具或器械,以及先进的加工技术才能实现的精度;超精密加工是指必须对先进加工技术进行实验、讨论、研究才能完成的精度。每个时期的精度指标是不同的,因此,这三种形式的加工也会随着时间的变化而变化。超精密加工技术以每个历史时期所能达到的最高加工精度值为衡量标准,只要超过了这个标准,我们就可将这些加工方法称之为超精密加工技术。就目前的标准而言,精密加工技术的加工精度为1一0.1um、表面粗糙度为Ra0.2一0.01um;而超精密加工技术的加工精度高于0.1um、表面粗糙度Ra小于0.25um,以及所用机床定位精度的分辨率和重复性高于0.01um。2精密加工技术的现状、应用与发展趋势1)精密成型加工的发展现状与应用精密铸造成形、精密模压成形、塑性加工、薄板精密成形技术在工业发达国家受到高度重视,并投入大量资金优先发展。70年代美国空军主持制订“锻造工艺现代化计划”,目的是使锻造这一重要工艺实现现代化,更多地使用CAD/CAM,使新锻件的制造周期减少75%。1992年,美国国防部提出了“军用关键技术清单”,其中包含了等压成型工艺、数控计算机控制旋压、塑变和剪切成形机械、超塑成型/扩散连接工艺、液压延伸成型工艺等精密塑性成型工艺。国外近年来还发展了以航空航天产品为应用对象的“大型模锻件的锻造及叶片精锻工艺”、“快速凝固粉末层压工艺”、“大型复杂结构件强力旋压成型工艺”、“难变形材料超塑成形工艺”、“先进材料(如金属基复合材料、陶瓷基复合材料等)成形工艺”等。我国的超塑成形技术在航天航空及机械行业也有应用,如航天工业中的卫星部件、导弹和火箭气瓶等,采用超塑成形法制造侦察卫星的钦合金回收舱。2)精密加工技术的发展趋势面向21世纪的精密加工技术的发展趋势体现在以下几个方面:a.精密化精密加工的核心主要体现在对尺寸精度、仿形精度、表面质量的要求。当前精密电火花加工的精度已有全面提高,尺寸加工要求可达±2-3μm、底面拐角R值可小于0.03mm,最佳加工表面粗糙度可低于Ra0.3μm。通过采用一系列先进加工技术和工艺方法,可达到镜面加工效果且能够成功地完成微型接插件、IC塑封、手机、CD盒等高精密模具部位的电火花加工。b.智能化智能化是而向21世纪制造技术的发展趋势之一。智能制造技术(IMT)是将人工智能融入制造过程的各个环节,通过模拟人类专家的智能活动,取代或延伸制造系统中的部分脑力劳动,在制造过程中系统能自动监测其运行状态,在受到外界干扰或内部激励能自动调整其参数,以达到最佳状态和具备自组织能力。新型数控电火花机床采用了模糊控制技术和专家系统智能控制技术。模糊控制技术是由计算机监测来判定电火花加工间隙的状态,在保持稳定电弧的范围内自动选择使加工效率达到最高的加工条件;自动监控加工过程,实现最稳定的加工过程的控制技术。3超精密加工技术的现状、应用与发展趋势超精密加工是指亚微米级(尺寸误差为0.3~0.03µm,表面粗糙度为Ra0.03~0.005µm)和纳米级(精度误差为0.03µm,表面粗糙度小于Ra0.005µm)精度的加工。实现这些加工所采取的工艺方法和技术措施,则称为超精加工技术。加之测量技术、环境保障和材料等问题,人们把这种技术总称为超精工程。超精密加工主要包括三个领域:超精密切削加工如金刚石刀具的超精密切削,可加工各种镜面。它已成功地解决了用于激光核聚变系统和天体望远镜的大型抛物面镜的加工。超精密磨削和研磨加工如高密度硬磁盘的涂层表面加工和大规模集成电路基片的加工。a.超精密切削超精密切削以SPDT技术开始,该技术以空气轴承主轴、气动滑板、高刚性、高精度工具、反馈控制和环境温度控制为支撑,可获得纳米级表面粗糙度。多采用金刚石刀具铣削,广泛用于铜的平面和非球面光学元件、有机玻璃、塑料制品(如照相机的塑料镜片、隐形眼镜镜片等)、陶瓷及复合材料的加工等。未来的发展趋势是利用镀膜技术来改善金刚石刀具在加工硬化钢材时的磨耗。此外,MEMS组件等微小零件的加工需要微小刀具,目前微小刀具的尺寸约可达50~100μm,但如果加工几何特征在亚微米甚至纳米级,刀具直径必须再缩小,其发展趋势是利用纳米材料如纳米碳管来制作超小刀径的车刀或铣刀。b.超精密磨削超精密磨削是在一般精密磨削基础上发展起来的一种镜面磨削方法,其关键技术是金刚石砂轮的修整,使磨粒具有微刃性和等高性。超精密磨削的加工对象主要是脆硬的金属材料、半导体材料、陶瓷、玻璃等。磨削后,被加工表面留下大量极微细的磨削痕迹,残留高度极小,加上微刃的滑挤、摩擦、抛光作用,可获得高精度和低表面粗糙度的加工表面,当前超精密磨削能加工出圆度0.01μm、尺寸精度0.1μm和表面粗糙度为Ra0.005μm的圆柱形零件。超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。美国50年代未发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(SinglePointDia-mondTurning)或“微英寸技术”(1微英寸=0.025μm),并发展了相应的空气轴承主轴的超精密机床,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件等。英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)是英国超精密加工技术水平的独特代表。4精密与超精密加工的工作环境超精密加工技术综合应用了机械技术发展的新成果及现代电子技术、测量技术和计算机技术等。同时,超精密加工技术的发展也促进了机械、液压、电子、半导体、光学、传感器和测量技术以及材料科学的发展。目前超精密加工还没有确切的定义,一般是指达到绝对加工精度为0.1µm或表面粗糙度为Ra0.0lµm以及达到加工允差和加工尺寸之比为106的加工技术。超精密加工对环境的要求十分严格,纳米加工对环境的要求就更加苛刻。只有对它的支撑环境加以严格控制,才能保证加工精度。加工所需的支撑环境主要包括空气环境、热环境、振动环境、声环境和磁环境等几个方面。本文着重介绍温度环境以及振动环境两个方面的环境因素以及一般的解决措施。4.1温度控制随着科学技术的飞速发展和国际竞争的加剧,超精密加工技术越来越成为工业化国家长远发展的根本支撑。保证良好的稳定加工条件是实现超精密加工的关键之一。据文献统计,在精密加工、超精密加工中机床热变形引起的加工误差占总误差的40%~70%。超精密加工60mm长的铝合金工件,温度变化1℃将产生1.35μm的误差。若确保0.1μm级加工精度,环境温度变化至少应控制在0.1℃范围内。温度控制主要的两种传热介质是油和空气,油的热容比较高且不可压缩,所以油喷淋温度可以比气喷淋达到更高的控制精度,美国LLNL实验室使用恒温油对放在局部恒温玻璃罩内的一台双轴超精密金刚石车床进行喷射,可以使加工区域内的温度保持在20℃±0.06℃。4.2环境规划其一般控制区域为一无窗的房间,以避免日光的影响。房内未设置暖气,因为在冬季,暖气会引起很大的局部过热。该房间有一玻璃门与外界隔离。此区域的控制用较大功率的空调实现,其温度控制精度在3℃以内,设定温度比玻璃隔间内低4℃~5℃。操作人员在此区域内活动。精密控制区域用双层玻璃与一般控制区隔开。使用石英电热管加热,最高功率达3kW。采用自适应预测模糊PID控制,此区域内最终的温度控制精度在0.1℃以内。4.3温度控制系统模型根据传热原理,具有蓄热能力的双层玻璃隔间通入加热气流,单位时间的热流量q与温升关系为sqqdtdc0(1)式中,c为受控区间的热容量J/℃;θ0为受控区间内的温度,℃;sq为单位时间受控区间向外散发的热量,J/s。sq与θ0成正比,与热阻R成反比,即Rqs0(2)设加热器输入功率为P,则可以得到(3)式中τ为温度控制系统的滞后时间,测量的结果为3min对式(3)做LAP