学年四川省成都七中嘉祥外国语学校七年级(上)期末数学试卷一.选一选(3×10=30分)1.下列合并同类项的结果正确的是()A.a+3a=3a2B.3a﹣a=2C.3a+b=3abD.a2﹣3a2=﹣2a22.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是()A.B.C.D.3.2011年12月,天文学家发现一颗新的与地球最近的系外类地行星,名为“HD85512B”,距地球大约36光年,此距离用科学记数法表示为()(1光年=30万千米)A.108×108mB.1.08×1010mC.3×108mD.108×108km4.如图,有三个同心圆,由里向外的半径依次是2cm,4cm,6cm将圆盘分为三部分,飞镖可以落在A.B.C任何一部分内,则下列说法正确的是()A.飞镖在A区域可能性为B.飞镖在B区域可能性为C.飞镖在C区域可能性为D.飞镖在三个区域可能性都为5.线段AB=6cm,BC=2cm,则A、C两点间的距离D是()A.D=8cmB.D=4cmC.D=8cm或D=4cmD.4cm≤D≤8cm6.甲站到乙站另有8个中间停靠站,共需准备()种动车票.A.90B.56C.45D.28.用一平面截一个正方体,不能得到的截面形状是()A.直角三角形B.等边三角形C.长方形D.六边形8.如果(3+m)x|m|﹣2﹣x=3﹣x是关于x一元一次方程,则M的值为()A.2B.3C.3或﹣3D.2或39.2012年1月有5个星期一,它们的日期和为80,那么这个月中星期六有()个.A.6B.5C.4D.310.①若|﹣a|=a,则a>0;②整数和分数统称有理数;③过一点,有且只有一条直线与已知直线平行;④2x2﹣xy+y2是二次三项式;⑤几个有理数相乘,当负因数的个数是奇数时,积一定为负数;⑥AB=BC,则B是AC中点.其中判断正确的有()A.1个B.2个C.3个D.4个二.填一填(11题每空2分,12.13.14.15每小题12分,共22分):11.①﹣2﹣2=;②﹣2×3×0×(﹣6)+12012=;③﹣3÷×3=;④﹣(a﹣b)=;⑤22°23′24″×3=;⑥比较大小:25°45′25.45°.12.已知x2﹣2x﹣3=0,那么代数式2x2﹣4x﹣5的值是.13.几何并不复杂,儿时就在用几何.在儿时玩玩具手枪,瞄准时总是半闭着眼睛,对着准星与目标,就能打中目标.所用的几何知识为.14.一新出土文物上有如下图案,但不幸的是长方形框出的部分严重损腐.观察下面图形,按图中规律在方框部分残图补充出来.三.算一算:15.①计算:﹣24×(﹣+)②﹣13﹣22×[﹣3×5﹣(﹣3)2]③解方程:﹣=1④若关于x、y的单项式cx2a+2y2与2xy3b﹣4相加合并后变为一个常数项,则a2b﹣[a2b﹣3(abc﹣a2c)﹣4a2c]﹣3abc的值是多少?四.解一解:16.A、B、C、D、E五点的距离如图所示(单位:M).(1)求D、E两点的距离(用关于A.B的代数式表示);(2)D为线段AE的中点,试说明B是线段AD的中点.17.在做解方程练习时,学习卷中有一个方程“2y﹣=y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个常数,该方程的解与当x=3时代数式5(x﹣1)﹣2(x﹣2)﹣4的值相同.”聪明的小聪很快补上了这个常数.同学们,请你们也来补一补这个常数..某班同学40人积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑.篮球.铅球.立定跳远中选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.请你根据图表中的信息回答下列问题:(1)在扇形统计图中填入铅球的百分数,并把条形统计图完成;(2)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%,请求出参加训练之前的人均进球数.19.如图,左图为一个边长为4的正方形,右图为左图的表面展开图(字在外表面上),请根据要求回答问题:(1)面“成”的对面是面;(2)如果面“丽”在右面,面“美”在后面,面会在上面;(3)左图中,M.N为所在棱的中点,试在右图中画出点M.N的位置;右图中三角形AMN的面积为.20.某新办高新产业2011年的两笔贷款记录如下表:贷款日期月利率%还款日期贷款金额(万元)还款金额(万元)4月1日1.512月1日6月1日112月1日合计300330(1)求两笔贷款的数额各是多少?A(元)B(元)单件成本30002000单件出厂价65006000(2)已知这两笔贷款的20%用于6月1日前的科研开发,另一部分从6月至11月投入生产新研发出的A、B种新专利产品,新产品的成本与出厂价如上表.到12月1日卖出所有产品,所获利润偿还两笔贷款后,还余200万元.求:两种产品的产量各是多少件?一.填空题(每小题4分,共20分):21.6条直线两两相交,最多有个交点,最多将平面分割为个部分.22.关于x的方程=x+1无解,则M的值为.23.星期天,小明下午4点到5点之间外出购买文具.离开家时和回到家时,都发现时钟的时针分针相互垂直,他外出的时间共分钟.24.数轴上线段AB的中点为C,当点A代表的数是M,点B代表的数是N,则点C代表的数是..设一列数a1、a2、a3、…a2012中任意三个相邻数之和都是30,已知a2=25,a99=2x,a2011=3﹣x,那么a2000=.二.解答题26.两河流交汇于点M处,甲河流水速为4km/h,乙河流水速为2km/h,一船只在静水中的速度为10km/h.某次该船只,从甲河流的上游A行驶到交汇处M后再沿乙河流逆流而上到点B,总共行驶了69km.原路返回后,发现往返所用时间相等.求此次航行往返总时间.三.27.水平直线上顺次三点A、O、B,以O点为顶点在直线上方作∠COD=40°,OM、ON分别平分∠AOC和∠BOD,求∠MON的度数.四.28.某公司规定业务员的工资包括基本工资和业务工资两个部分,其中基本工资为3000元/月,业务工资是按业务员当月的业务总额的千分之五来计算的.又根据国家税务法规定,每月个人所得税超过3500元的部分为应纳税所得额,需缴纳一定的个人所得税.上缴个人所得税是按下表累加计算的.应纳税所得额税率不超过1500元的部分3%超过1500元至4500元的部分10%(1)业务员甲为测算自己的业务工资,自己记录了2011年11月份连续五天的业务情况,以2500元为标准.超过的记正数,不足的记负数,记录如下:800.500.﹣200.1200.200;帮助业务员甲测算出这个月的工资(按1个月25个工作日计算).(2)公司业务员乙到银行取工资时发现他2011年11月份的工资比测算的工资少了95元,他先愣了一下,又知道是由于上缴了个人所得税的原因.聪明的同学,你能求出业务员乙2011年11月份的工资吗?(3)为年终促销,公司经理出台一奖励办法,办法规定:12月份起,若12月份业务总额不超过6万元的按原来规定计算当月业务工资,若月总额超过6万元但不超过10万元,则超过6万元的部分另加千分之二来计算当月业务工资,若月业务总额超过10万元,则其中的10万元按上面的两个规定,超过10万元的部分另加千分之五来计算当月的业务工资.出台了这一奖励办法之后,12月份营业员柄上缴个人所得税143元,那么他这个月的业务总额为多少万元?参考答案与试题解析一.选一选(3×10=30分)1.下列合并同类项的结果正确的是()A.a+3a=3a2B.3a﹣a=2C.3a+b=3abD.a2﹣3a2=﹣2a2考点:合并同类项.分析:本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,几个常数项也是同类项;合并同类项时系数相加减,字母与字母的指数不变.解答:解:A、a+3a=3a;B、3a﹣a=2a;C、不是同类项,不能合并;D、正确.故选D.点评:本题考查同类项的定义,合并同类项时把系数相加减,字母与字母的指数不变.2.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是()A.B.C.D.考点:简单几何体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看依然可得到两个半圆的组合图形,故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,注意看得到的棱画实线.3.2011年12月,天文学家发现一颗新的与地球最近的系外类地行星,名为“HD85512B”,距地球大约36光年,此距离用科学记数法表示为()(1光年=30万千米)A.108×108mB.1.08×1010mC.3×108mD.108×108km考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:36光年×30万千米=10800000000m,用科学记数法表示为:1.08×1010m.故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,有三个同心圆,由里向外的半径依次是2cm,4cm,6cm将圆盘分为三部分,飞镖可以落在A.B.C任何一部分内,则下列说法正确的是()A.飞镖在A区域可能性为B.飞镖在B区域可能性为C.飞镖在C区域可能性为D.飞镖在三个区域可能性都为考点:几何概率.分析:根据圆环面积求法得出圆环面积,再求出大圆面积,即可得出飞镖落在阴影圆环内的概率.解答:解:解:∵有三个同心圆,由里向外的半径依次是2cm,4cm,6cm将圆盘分为三部分,∴阴影部分面积为:π(42﹣22)=12π,大圆的面积为:36π,∴那么飞镖落在阴影圆环内的概率是:=.故选B.点评:此题主要考查了几何概率,根据三圆半径依次是2cm,4cm,6cm求出圆环面积与大圆面积是解决问题的关键.5.线段AB=6cm,BC=2cm,则A、C两点间的距离D是()A.D=8cmB.D=4cmC.D=8cm或D=4cmD.4cm≤D≤8cm考点:两点间的距离.分析:分点A、B、C三点共线时,点C在线段AB上和不在线段AB上两种情况求出D,再写出取值范围即可.解答:解:点A、B、C三点共线时,若点C在线段AB上,则D=6﹣2=4cm,若点C不在线段AB上,则D=6+2=8cm,所以,A、C两点间的距离D是4cm≤D≤8cm.故选D.点评:本题考查了两点间的距离,难点在于先求出三点共线时D的值.6.甲站到乙站另有8个中间停靠站,共需准备()种动车票.A.90B.56C.45D.28考点:直线、射线、线段.分析:由于同一直线上的n个点之间有条线段,代入即可求得线段的总条数,进而可得车票的种数.解答:解:∵甲站到乙站另有8个中间停靠站,∴线段上共有10个点,∴线段的总条数是:=45,∵车票是往返的,故动车票的数量为45×2=90,故选:A.点评:此题主要考查了数线段,关键是掌握计算线段的公式(n是点的个数)..用一平面截一个正方体,不能得到的截面形状是()A.直角三角形B.等边三角形C.长方形D.六边形考点:截一个几何体.分析:画出用一个平面去截正方体得到的几何体的图形,即可判断选项.解答:解:画出截面图形如图显然B、正三角形,C长方形:D、正六边形可以画出三角形但