数学一、选择题1.下面四个由−2和3组成的算式中,运算值最小的是()A.−2−3B.−23C.3−2D.(−3)22.一个正方形的面积为28,则它的边长应在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间3.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,74.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是−1,则顶点A坐标是()A.(2,−1)B.(1,−2)C.(1,2)D.(2,1)5.如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移得到△DCE,连接AD、BD,下列结论错误..的是()A.AD∥BCB.AC⊥BDC.四边形ABCD面积为43D.四边形ABED是等腰梯形6.不等式组11224(1)xxx≤的解集是()A.−2<x≤3B.−2<x<3C.2<x≤3D.−2≤x<37.关于x的两个方程220xx与122xxa有一个解相同,则a的值为()A.−2B.−3C.−4D.−58.如图,△ABC是边长为6的等边三角形,AD=2,AE∥BC,直线BD交AE于点E,则BE的长为()A.37B.43C.33D.59.已知P是⊙O内一点,⊙O的半径为15,P点到圆心O的距离为9,则通过P点且长度是整数的弦的条数是()A.5B.7C.10D.1210.在△ABC中,∠ABC=30°,AB边长为10,AC边的长度可以在3、5、7、11中取值,满足这些条件的互不全等的三角形的个数是()A.3B.4C.5D.6二、填空题11.分解因式:x3−4x=.12.去年,太仓全市实现全口径财政收入226.5亿元,同比增长25.8%.则226.5亿元用科学记数法可表示为元.OABCyxABCED13.函数2xyx中,自变量x的取值范围是.14.现有四条线段,长度依次是2,3,4,5,从中任选三条,能组成三角形的概率是.15.已知抛物线的顶点坐标为(2,9),且它在x轴上截得的线段长为6,则该抛物线的解析式为.16.如图是函数y=3−|x−2|的图象,则这个函数的最大值是.17.若一个圆锥的侧面积是它底面积的2倍,则这个圆锥的侧面展开图的圆心角是.18.如图,已知直线334yx交x轴、y轴于点A、B,⊙P的圆心从原点出发以每秒1个单位的速度向x轴正方向移动,移动时间为t(s),半径为2t,则t=s时⊙P与直线AB相切.三、解答题19.计算:202012o113π1cos602.20.解方程组22,3210.xyxy21.先化简22214244xxxxxxxx,再从−2,0,1,2中选择一个合适..的数代入,求出这个代数式的值.ABxOyP22.(本题共6分)如图,已知四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.(1)求证:OA=OB;(2)若∠CAB=35,求∠CDB的度数.23.(本题共6分)太仓人杰地灵,为了了解学生对家乡历史文化名人的知晓情况,某校对部分学生进行了随机抽样调查,并将调查结果绘制成如图所示统计图的一部分.根据统计图中的信息,回答下列问题:(1)本次抽样调查的样本容量是_;(2)在扇形统计图中,“了解很少”所在扇形的圆心角是度;(3)若全校共有学生1300人,那么该校约有多少名学生“基本了解”太仓的历史文化名人?24.(本题共6分)我们在配平化学方程式时,对于某些简单的方程式可以用观察法配平,对于某些复杂的方程式,还可以尝试运用方程的思想和比例的方法.例如方程式:322NHONO+HO催化剂,可以设NH3的系数为1,其余三项系数分别为x、y、z,即:3221NHONO+HOxyz催化剂,依据反应前后各元素守恒,得:1,32,2yzxyz,解之得四项系数之比为1:54:1:32,扩大4倍得整数比为4:5:4:6,即配平结果为:3224NH5O4NO+6HO催化剂.请运用上述方法,配平化学方程式:223Al+MnOAlOMn高温.ABCDO不了解10%很了解基本了解了解很少不了解了解很少基本了解很了解了解程度51015202530人数/人255525.(本题共6分)智能手机如果安装了一款测量软件“SmartMeasure”后,就可以测量物高、宽度和面积等.如图,打开软件后将手机摄像头的屏幕准星对准脚部按键,再对准头部按键,即可测量出人体的高度.其数学原理如图②所示,测量者AB与被测量者CD都垂直于地面BC.(1)若手机显示AC=1m,AD=1.8m,∠CAD=60,求此时CD的高.(结果保留根号)(2)对于一般情况,试探索手机设定的测量高度的公式:设AC=a,AD=b,∠CAD=α,即用a、b、α来表示CD.(提示:sin2α+cos2α=1)26.(本题共8分)如图,已知一次函数y1=k1x+6与反比例函数22kyx(x0)的图象交于点A、B,且A、B两点的横坐标分别为2和4.(1)k1=,k2=;(2)求点A、B、O所构成的三角形的面积;(3)对于x0,试探索y1与y2的大小关系(直接写出结果).ABOxy图①ABCD图②27.如图,已知矩形ABCD中,AB=10,AD=4,点E为CD边上的一个动点,连结AE、BE,以AE为直径作圆,交AB于点F,过点F作FH⊥BE于H,直线FH交⊙O于点G.(1)求证:⊙O必经过点D;(2)若点E运动到CD的中点,试证明:此时FH为⊙O的切线;(3)当点E运动到某处时,AE∥FH,求此时GF的长.28.如图,将□OABC放置在平面直角坐标系xOy内,已知AB边所在直线的解析为:y=−x+4.(1)点C的坐标是(,);(2)若将□OABC绕点O逆时针旋转90得OBDE,BD交OC于点P,求△OBP的面积;(3)在(2)的情形下,若再将四边形OBDE沿y轴正方向平移,设平移的距离为x(0≤x≤8),与□OABC重叠部分面积为S,试写出S关于x的函数关系式,并求出S的最大值.AFBCHEDOGABCDEOxyP29.如图,已知点A(−3,5)在抛物线y=12x2+c的图象上,点P从抛物线的顶点Q出发,沿y轴以每秒1个单位的速度向正方向运动,连结AP并延长,交抛物线于点B,分别过点A、B作x轴的垂线,垂足为C、D,连结AQ、BQ.(1)求抛物线的解析式;(2)当A、Q、B三点构成以AQ为直角边的直角三角形时,求点P离开点Q多少时间?(3)试探索当AP、AC、BP、BD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)时,点P离开点Q的时刻.ACDOBPyxQ2012年太仓市初中毕业暨升学考试模拟试卷数学参考答案及评分标准一、选择题(每小题3分,共30分)题号12345678910答案BCDDCADADB二、选择题(每小题3分,共24分)11.x(x+2)(x−2)12.2.265101013.x≥−2且x≠014.3415.y=−(x+1)(x−5)16.317.18018.2411或24三、解答题(共10大题,共76分)19.(共4小题,每小题4分,共16分)解:原式=14+1+12=512········································································4’+1’20.(共2小题,每小题4分,共8分)解:①2得:4x+2y=4③····································································1’②+③得:7x=14················································································2’∴x=2·····························································································3’把x=2代入①得:y=−2······································································4’∴原方程组的解为:2,2.xy······························································5’21.(本题共6分)解:原式=221(2)42xxxxxxx·························································2’=2(2)(2)(1)(2)4xxxxxxxx······························································3’=24(2)4xxxxx···············································································4’=212x······················································································5’取x=1代入得,原式=−1·····································································6’22.(本题6分)(1)证明:∵△ABC≌△BAD,∴∠BAC=∠ABD.····································1’∴OA=OB.···················································································2’(2)解:∵△ABC≌△BAD,∴AC=BD.·················································3’∵OA=OB,∴OC=OD,∴∠OCD=∠ODC.········································4’∵∠OAB+∠OBA=2∠CAB=70,∴∠OCD+∠ODC=70.·······················5’∴∠CDB=35.··············································································6’23.(本题共6分)(1)50··································································································2’(2)180·································································································4’(3)解:由题意得,“很了解”占10%,故“基本了解”占30%.···················5’∴“基本了解”的学生有:130030%=390(人)········································6’24.(本题共6分)解:设Al的系数为1,其余三项分别为x,y,z即:2231Al+MnOAlOMnxyz高温·················································1’由题意得:12,,23yxzxy···