第七章贝塞尔函数7.1Bessel方程及其幂级数解定义:称Bessel方程为:222'''()0xyxyxny其中,n为任意实数。当n0时,取级数解0ckkkyax有1200'()''()(1)ckckkkkkyackxyackckx代入原式,222222012{[()(1)()]}()[(1)]0kkkkackckckaaxacaacnx有222201222()0[(1)]0[()]0kkacnacnackna得1,0cna,取c=n,有222()kkaankn定理:212200,1,...(1)!2!()!mmmmamnamnm取022!nan得22(1)2!()!mmnmamnm有一个特解220(1)()2!()!mnmnnmmyJxxmnm取c=-n,得另一个特解2220(1)()2!()!mnmnnmmxyJxmnm称Jn(x)为第一类Bessel函数。当n不为整数x--0时,有Jn(x)--0,J-n(x)--∞,则Jn(x)-与J-n(x)不相关。由齐次线性常微分方程通解的结构定理知道,当n不为整数,Bessel方程的通解为()()nnyaJxbJx由级数收敛差别法,有22211limlim04()mmmmaamnmR式中R为收敛半径,可知R=∞,则Jn(x)与J-n(x)的收敛范围为0|x|∞定义:当n为整数时,Jn(x)-称为整数阶Bessel函数例计算J0(1)的前三项和。定理,n为整数时,Jn(x)=(-1)nJ-n(x)证,取m=n+l,得220(1)()(1)(1)()22()!()!nllnnnnnllxxJxJxnll可见正、负n阶Bessel函数只相差一个常数因子(-1)n,这时Bessel方程的通解需要求出与之线性无关的另一个特解。定义1Neumann函数()cos()()()sin()aaaJxaJxYxa称为第二类Bessel函数。定理:综合上面所述,不论n是否为整数,Bessel方程的通解都可表示为()()nnyAJxBYx其中,A,B为任意常数;n为任意实数7.2Bessel函数的母函数定义函数1()2()xznznneJxz称为Bessel函数的母函数。取jzje有cos01()()cosjxnnneJxJxjn定理:112()()()nnnnJxJxJxx11'()()()'()()()nnnnnnxJxnJxxJxxJxnJxxJx7.3Bessel函数的正交性例:求222'''()001(1)0|(0)|xyxyxnyxyy解,由于方程222'''()0zpzpznp的通解为()()()nnpzAJzBYz取,()()zxyxpx有2'',''()''ypyp22'',''''xyzpxyzp则有222'''()0xyxyxny的通解为()()nnyAJxBYx要求y(0)为有限值,得()nyAJx由y(1)=0,得()0nJ设Jn(x)=0的零点为()nm则有固有值2()nnmm固有值相对应的固有函数为()()()nmnmPxJx定理:1()()2()100,()()0.5()nnnknmnmmmkxJxJxdxJ证:由于()()()()(),()nnnnknkmnmJJxJJx都为下面方程的解222220'''()'''()[]()nddynxyxyxnyxyyxyxxyxddx有()2()()()2()()[]()0[]()0nnnkkknnnmmmdJdnxxJdxdxxdJdnxxJdxdxx分别乘()()()()(),()nnnnknkmnmJJxJJx()2()()()()()2()()()()[]()0[]()0nnnnnkmkkmnnnnnmkmkmdJdnJxxJJdxdxxdJdnJxxJJdxdxx相减()()()()()()()()0[][][]nnnnnnnnkmmkkmmkdJdJddJxJxxJJdxdxdxdx从0到1积分,111()()()()()()()()0000[][][]nnnnnnnnkmmkkmmkdJdJddJxdxJxdxxJJdxdxdxdxdx1()()()()1()()()()00[][]nnnnnnnnkmmkkmmkdJdJxJJxJJdxdxdx1()()()()()()()()0()()[]nnnnnnnnkmnmnkkmmkdJdJJJxJJdxdxdx当k≠m时,有1()()00nnmkxJJdx当km时,有()()()()1()()()()0()()limnnnnkmnmnknnmknnmkkmdJdJJJdxdxxJJdx()2()()()()22()()'()()[]22nnnnnkmknmnknnkkdJdJdJJJdxdxdx12()2()10()0.5()nnnmnmxJxdxJ证毕。定理:称f(x)在[0,1]中的展开式为1()()02()11()()()()0.5()nnmnmnmmnmnmxfxJxdxfxAJxAJ例展开f(x)=4解:11()()001()2()22122000()()4()4(1)4(1)2!()!2!()!(22)nnnmnmmnnmmnnmnmmmnmnmmmxfxJxdxxJxdxxdxmnmmnmnm例:求/001,01xxxzzuuxuxz2(1)0(1)0()uxuzuzhx解,取u=R(x)Z(z),有'''/''RRxZRZ,则''ZZ22'''0(1)0,|(0)|xRxRxRRxR它的固有值和固有函数(0)(0)0()()mmmmRxJx有(0)(0)mmzzmmmZAeBe由Z(z=0)=0,有(0)(0)(0)[]2()mmzzmmmmmZAeeAshz取(0)(0)012()()mmmmuAshzJx有2(0)(0)012()()mmmmxAshhJx求得13(0)00(0)2(0)1()()()mmmmxJxdxAshhJ所以13(0)0(0)(0)00(0)2(0)11()2()()()()mmmmmmxJxdxushzJxshhJ第八章Legendre多项式8.1Legendre方程及其幂级数解定义:称Legendre方程为2(1)''2'(1)0xyxynny取级数解0ckkkyax有1200'()''()(1)ckckkkkkyackxyackckx代入原式,22000(1)()(1)2()(1)0ckckckkkkkkkxackckxackxnnax经过适当的整理,得2(1)0(1)0(2)(1)[()(1)(1)]0kkkkccaccakckcakckcnna取c=0,得20(1)(1)(2)(1)kkkkkkknnyaxaakk或0011yayay221221010001mmmmmmaayxyxaa定理,y0,y1相互独立.例,求22101,,0,1,2mmaamaa定义,Legendre多项式(或称为第一类Legendre函数)[/2]20(1)(22)!()2!()!(2)!mnnmnnmnmPxxmnmnm例求,1,2,3,4nPn定理:2(1)()2!nnnnndxPxndx定理Legendre多项式满足以下的递推公式定理Legendre多项式序列在区间[1,1]上正交例展开2()fxx