N-S方程在平板间脉冲流动中的应用摘要粘性流体力学是一个历史悠久而又富有新生命力的学科。它与人们日常生活、健康和旅行无不息息相关。早在纪元前希腊学者阿基米德即建立了液体载物的浮力理论,其领先远超于力学建基之始。二千二百年前在李冰父子创导下,我国也建利灌舒洪的都江堰,这个伟大工程当时确已掌握现今的水力学原则和近代的工程设计理论。在流体粘性效应的问题上,不乏先进接连攻关,终难胜克,足见其艰困之甚。近数年代里,由于工业发展的迫切需求,已促进不少新学科的萌芽滋长。诸如能源发展;海洋、大气和陆地交应干扰和持恒;农林牧业的生物科技新探索;城市、河流和山岳的环境保护;疾病防治的医疗科学以及自然灾害的消减和救援等都赋予流体力学新的生命。纳维-斯托克斯方程又称为N-S方程,是描述实际流体运动的微分方程式,纳维-斯托克斯方程在流体力学中有十分重要的意义。本文将在阐述粘性流体力学的基本方程的基础上,借助于数学软件MAPLE,应用N-S方程解决平行平板间的脉冲流动问题。关键词:N-S方程,平行平板,脉冲流动,Maple1第一章数学及物理背景数学物理方程以具有物理背景的偏微分方程(组)作为研究的主要对象,主要是指力学、天文学、物理学及工程技术中提出来的偏微分方程,它是随着17世纪工业生产的发展,伴随着天文学、物理学等自然科学的发展而逐步形成的一门独立学科。描述许多自然现象的数学形式都可以是偏微分方程式,特别是很多重要的物理力学及工程过程的基本规律的数学描述都是偏微分方程,例如流体力学、电磁学的基本定律都是如此。所以数学物理方程在推动数学理论发展对于推动数学理论的发展,加强理论与实际的联系,帮助人们认识世界和改造世界都起着重要作用。但是在使用函数和解方程中,针对表达式和符号运算的问题一直困扰着我们,只能依赖铅笔和演草纸进行纯手工计算,现在这些工作都可以借助计算机代数系统来完成。计算机代数系统包括数值计算、符号计算、图形演示和编程等四部分。在科学研究、教育教学等各个领域得到广泛应用。Maple是一种计算机代数系统,是目前广泛使用的数学计算工具之一。用Maple不但可以进行简单的加减乘除运算,也可以求解代数方程、微分方程,进行微分运算或处理线性代数问题。纳维—斯托克斯方程是一组描述像液体和空气这样的流体物质的方程。这些方程建立了流体的粒子动量的改变率和作用在液体内部的压力的变化和耗散粘滞力以及引力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维—斯托克斯方程描述作用于液体任意给定区域的力的动态平衡。纳维—斯托克斯方程依赖于微分方程来描述流体的运动。这些方程和代数方程不同,不寻求建立所研究的变量的关系,而是建立这些变量的变化率或通量之间的关系。用数学术语来讲,这些变化量对应于变量的导数。这表示对于给定的物理问题的纳维—斯托克斯方程的解必须用微积分的帮助才能取得。2第二章纳维—斯托克斯方程纳维—斯托克斯方程为一组非线性二阶偏微分方程组,一般情况下在数学上求其精确解是非常困难的。只有在某些特殊流动情况下,例如当非线性的迁移项为零的情况下,可以求得精确解。N—S方程dtduzuyuxuxpXxxxx)(1222222dtduzuyuxuypYyyyy)(1222222dtduzuyuxuzpZzzzz)(1222222对于粘性不可压缩流体的N-S方程而言,压力项及粘性性是线性的,而惯性项却是非线性的。这一非线性项的存在使得在解方程时,碰到很大的困难。在理想不可压缩流体的Euler方程,虽然也存在非线性的惯性项,但是因为相当一部分的实际问题是无旋的。对于无旋流动,问题可归结为求解线性的Laplace方程(运动学方程),速度势求出后,压力可由拉格朗日积分或伯努力积分求出(动力学问题),问题得到了很大的简化。但是粘性不可压缩流体的运动中,运动都是有旋的,因而也不存在拉格朗日积分或伯努力积分,因此不得不求解原始的二阶偏微分方程组。到目前为止,还没有求解非线性偏微分方程到普遍有效的方法,在流体力学中,求解上述非线性偏微分方程组通常有两种主要途径:(1)准确解:在一些简单到问题中,由于问题的特点,非线性的惯性项或者等于零,或者是非常简单的非线性方程组,此时基本方程组或者化为线性方程组,或者化为简单的非线性方程组,从而可以找出方程组的准确解来。但是具有准确解的问题为数很少,而且一般说来很少能直接地用到实际问题中去。(2)近似解:根据问题到特点,略去方程中某些次要项,从而得出近似方程。在某些情况下,可以得出近似方程的解。这种途径称为近似方法,可采用近似方法求解的主要有下列两种情况:(a)小雷诺数Re情况,此时粘性力较惯性力大得多。可以全部或部分地3忽略惯性力得到简化的线性方程。(b)大雷诺数Re情况,若将粘性力全部略去,并且在物面上相应地提滑移边界条件,这就是理想流体的近似模型。在这个近似模型中无法求出符合实际的阻力。进一步研究发现,在贴近物面很薄的一层边界层中,必须考虑粘性的影响,但此时根据问题的特点,可以略去粘性力中的某些项,从而得到简化的边界层方程(仍是非线性的)。而在边界层外,仍可将粘性全部忽略。(c)对于中等雷诺数Re的情况,惯性力和粘性力都必须保留,此时只能通过其它途径简化问题,或者利用数值计算方法求N-S方程到数值解。4第三章平行平面间的脉冲流动平行平面间的脉冲流动是一个可以得到N—S方程精确解的非恒定流动,它对研究血液流动是有意义的。图1两个固定的平行平面位于y=a处,x处的压强梯度随时间振动,于是x方向的流速也将随压强梯度而振动。在,yz方向流速均为零,即0v,0w从而由连续性方程可得0ux。于是((,),0,0)uuyt(0.1)N—S方程简化为1*()uputxyy(0.2)边界条件;0yau(0.3)假设压强梯度的振动为以下形式:()cospPtAtt(0.4)式中,A为实数常数,代表振动幅度,代表振动频率,则式(1)改写为()()cos()uuuPtAttyyyy(0.5)若流速u可以表示为(,)Re[()]ituytfye(0.6)图表1平行平板间的脉冲流动5式中,“Re[]”表示括弧中量的实数部分。代入式(4),得22Re[]Re[]Re[]itititdfifeAeedy(0.7)从而''ifAf,或写为''iAff(0.8)为函数f的非齐次线性方程。这个常微分方程的解是由一个常数的特解和齐次方程的通解所组成,即12()()()fyfyfy,其中特解为1()AAfyii(0.9)其次方程的通解为2()cosh[(1)]sinh[(1)]22fyMiyNiy(0.10)式中,,MN为待定系数,由边界条件(,)0,(,)0uatuat,可以得出0cosh[(1)]sinh[(1)]22AiMiaNia(0.11)0cosh[(1)]sinh[(1)]22AiMiaNia(0.12)从而定出常数,MN:cosh[(1)]2iAMia(0.13)0N(0.14)于是方程(3.8)的解为cosh(1)2()[1]cosh(1)2iyiAfyia(0.15)流速(,)uyt:6cosh(1)2(,)Re{[1]}cosh(1)2itiyiAuyteia(0.16)为了直观地分析结果,将,,A分别赋予相应的具体数值,并应用MAPLE作出3D图像(图像及MAPLE语句见附录),可以看出,流速与压强梯度具有相同的振动频率,但存在随y而变化的相位差。壁面附近的振幅与中心处振幅不同,由边界条件可以看出在避免处振幅趋近于零。7课程总结再次接触数学物理方程这门课感触很深,虽然本科阶段对这门课程有过基本的学习,但当时的感觉只是学习从物理问题中抽象出来的数学问题,并没有将方法用于实践,现在更加注重理论与实践的结合,应用数学思想解决实际问题,尤其是解决专业相关的具体问题。数学物理方程这门课素来以“繁,难”著称,较之高等数学有过之而无不及。但是在本次的学习过程中,加入了数学软件MAPLE的学习与应用,使得单纯的数学物理方程的学习变得不再单调和枯燥,并且将所学内容应用于专业知识的分析与处理,应用于实际的物理问题。本课程收获颇丰得益于教员鞭辟入里的剖析讲解、启发式的教学模式和团结合作、相互探讨的课堂氛围。在课程进行过程中仍存在一点瑕疵,学生自己准备章节时,部分基础性的理论并没有充分准备,例如行波法非齐次问题的处理这一节中,齐次化原理是求解的基础,但学生授课时并没有准备相关的理论与来由。最后感谢田教员的悉心讲解和耐心指导,恭祝教员新年快乐、身体健康。8附录9参考文献[1]唐晓寅.工程流体力学[M].重庆:重庆大学出版社,2007.[2]王元明.数学物理方程与特殊函数(第四版)[M].北京:高等教育出版社,2012.[3]章梓雄董曾南.粘性流体力学(第二版)[M].北京:清华大学出版社,2011.