2017年04月19日6的初中数学组卷一.解答题(共40小题)1.阅读材料:我们曾经解决过如下问题:“如图,点M,N分别在直线AB同侧,如何在直线AB上找到一个点P,使得PM+PN最小?”我们可以经过如下步骤解决这个问题:(1)画草图(或目标图)分析思路:在直线AB上任取一点P′,连接P′M,P′N,根据题目需要,作点M关于直线AB的对称点M′,将P′M+P′N转化为P′M′+P′N′,“化曲为直”寻找P′M′+P′N的最小值;(2)设计画图步骤;(3)回答结论并验证.借鉴阅读材料中解决问题的三个步骤完成以下尺规作图:已知三条线段h,m,c,求作△ABC,使其BC边上的高AH=h,中线AD=m,AB=c.(1)请先画草图(画出一个即可),并叙述简要的作图思路(即实现目标图的大致作图步骤);(2)完成尺规作图(不要求写作法,作出一个满足条件的三角形即可).2.如图,△ABC中AB=AC,BC=6,,点P从点B出发沿射线BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由.3.如图,AD∥BC,BE平分∠ABC交AD于点E,若AB=4,求AE的长.4.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:①AC=BD②∠APB=60°.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)5.如图,在△ABC中,AB=AC=a,BC=b,且2a>b,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.(1)在图(1)中,D是BC边上的中点,计算DE+DF和BG的长(用a,b表示),并判断DE+DF与BG的关系.(2)在图(2)中,D是线段BC上的任意一点,DE+DF与BG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG的关系.(不要求证明)6.已知:等边三角形ABC(1)如图1,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;(2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD.7.在等边三角形ABC中,D、E分别在边BC、AC上,DC=AE,AD、BE交于点F,(1)请你量一量∠BFD的度数,并证明你的结论;(2)若D、E分别在边BC、CA的延长线上,其它条件不变,(1)中的结论是否成立,请画图证明你的结论.8.等边△ABC,点D是直线BC上一点,以AD为边在AD的右侧作等边△ADE,连接CE.(1)如图1,若点D在线段BC上,求证:CE+CD=AB;(2)如图2,若点D在CB的延长线上,线段CE,CD,AB的数量有怎样的数量关系?请加以证明.9.如图,D是等边△ABC的边AB上一点,E是BC延长线上一点,CE=DA,连接DE交AC于F,过D点作DG⊥AC于G点.证明下列结论:(1)AG=AD;(2)DF=EF;(3)S△DGF=S△ADG+S△ECF.10.如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.11.(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC中,∠C是其最小的内角,过顶点B的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC与∠C之间的关系.12.数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).(1)已知:如图①,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小乔发现:下面两个等腰三角形如图②、③也具有这种特性.请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出两个不同类型且具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(说明:要求画出的两个三角形不相似,且不是等腰三角形.)(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.13.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.14.如图,以△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,请你探究线段DE与AM之间的关系.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.①画出将△ACM绕某一点顺时针旋转180°后的图形;②∠BAC=90°(如图)附加题:如图,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,试探究线段DE与AM之间的关系.15.如图1,Rt△ABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM垂直BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F.试判断△DEF的形状,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或者更换已知条件,完成你的证明.1、画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;2、点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2).附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由.16.如图所示,在一笔直的公路MN的同一旁有两个新开发区A,B,已知AB=10千米,直线AB与公路MN的夹角∠AON=30°,新开发区B到公路MN的距离BC=3千米.(1)新开发区A到公路MN的距离为;(2)现要在MN上某点P处向新开发区A,B修两条公路PA,PB,使点P到新开发区A,B的距离之和最短.此时PA+PB=(千米).17.已知:如图,等边三角形ABC的边长为6,点D,E分别在边AB,AC上,且AD=AE=2.若点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设点F运动的时间为t秒.当t>0时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB与GH相交于点O.(1)设△EGA的面积为S,写出S与t的函数关系式;(2)当t为何值时,AB⊥GH;(3)请你证明△GFH的面积为定值;(4)当t为何值时,点F和点C是线段BH的三等分点.18.如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.19.已知:如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线MN分别交BC,AB于点M,N,求证:CM=2BM.20.如图,已知在△ABC中,AB=AC,D是AB上一点,DE⊥BC,E是垂足,ED的延长线交CA的延长线于点F,求证:AD=AF.21.已知:如图,边长为2的等边三角形ABC,延长BC到D,使CD=BC,延长CB到E,使BE=CB,求△ADE的周长.22.如图,△ABC中,∠ACB=α(0°<α<90°),CD平分∠ACB,过C点作CD的垂线交AB的垂直平分线于M,连接AM,求∠BAM(用含α的式子表示).23.已知:在△ABC中,AB=AC,CD是AB边上的高,点P是AC边上任意一点(不与点A、点C重合)过点P作PE⊥BC,垂足为E,交CD于点F.若AD=CD,探究线段PF、CE之间的数量关系,并证明你的结论.24.如图,在四边形ABCD中,∠B=∠C=90°,AB=BC,点E在边BC上,△ADE为等边三角形.若CD=2.求AD的长.25.如图,已知D是等边三角形ABC的AB边延长线上一点,BD的垂直平分线HE交AC延长线于点E,那么CE与AD相等吗?试说明理由.26.如图,已知BD平分∠ABC,AB=AD,DE⊥AB,垂足为E.(1)求证:AD∥BC;(2)①若DE=6cm,求点D到BC的距离;②当∠ABD=35°,∠DAC=2∠ABD时,求∠BAC的度数.27.如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.求证:△FCD是等腰三角形.28.如图,在△ABC中,BP平分∠ABC,CP平分∠ACB,且PD∥AB,PE∥AC,BC=5,求△PDE的周长.29.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.30.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.31.如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF⊥AB于F.求证:∠BDF=∠ADE.32.在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠CAD.33.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.34.如图,等边三角形ABC的边长是2,D、E分别为AB、AC的中点,点F在BC延长线上,且CF=,求四边形DEFB的面积.35.如图,△ABC是等边三角形,BD⊥AC于点D,E为BC的中点,连接DE.求证:DE=DC.36.如图,在△ABC中,∠BAC=90°,∠C=30°,AE为BC边上的中线.求证:△ABE是等边三角形.37.如图,等边△ABC中,点D、E、F分别同时从点A、B、C出发,以相同的速度在AB、BC、CA上运动,连结DE、EF、DF.(1)证明:△DEF是等边三角形;(2)在运动过程中,当△CEF是直角三角形时,试求的值.38.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.39.在△ABC中,MP,NO分别垂直平分AB,AC.(1)若BC=1Ocm,试求