1数控机床加工精度异常的诊断与处理摘要:作为数控车床操作者不光要能熟练操作机床还要能排除机床的故障,更为重要的是能对机床加工精度做出正确的诊断以及故障正确排除。所以通过对数控车床机械精度、系统精度参数改动或发生变化,机床电气精度参数优化电机运行等方式来提高数控机床工作精度,并能以在其日常生产中遇到的常见数控机床加工精度异常故障为依据,剖析了生产过程中数控车床出现的精度故障,提出相应的诊断与处理方案。关键词:精度异常数控故障诊断在机械制造业发展快速的今天,不光要求操作者能熟练操作机床还要求操作者能对数控机床精度的稳定性和加工精度异常故障的诊断与处理做出正确的判断以及提出正确的解决方案。以数控车床发那科系统为例在生产中经常会遇到数控车床加工精度异常的故障。有些故障能很好的排除有些故障隐蔽性强、诊断难度大。那么如何去排除这些故障,并查找出导致此类故障的原因。一、机床几何精度、定位精度发生变化数控机床的高精度最终是要靠机床本身的精度来保证零件形位公差,数控机床精度包括几何精度、定位精度。另一方面,数控机床各项性能的好坏及数控功能能否正常发挥将直接影响到机床的正常使用。(一)数控机床几何精度的检验及解决办法1.数控机床几何精度的检验数控机床的几何精度检验,又称静态精度检验,包括以下几个检测项目:1)工作台面的平面度;2)各坐标方向上移动的相互垂直度;3)工作台面X、Y坐标方向上移动的平行度;4)主轴孔的径向圆跳动;5)主轴轴向的窜动;6)主轴箱沿z坐标轴心线方向移动时的主轴线平行度;7)主轴在z轴坐标方向移动的直线度和主轴回转轴心线对工作台面的垂直度等。目前,检测机床几何精度的常用检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪、高精度检验棒等。2检测工具的精度必须比所测的几何精度高一个等级,否则测量的结果将是不可信的。每项几何精度的具体检测方法可照JB2670-82《金属切削机床精度检测通则》、JB4369-86《数控卧式车床精度》等有关标准的要求进行。2.数控机床几何精度异常解决办法(1)机床水平调整数控机床经通电初步运转后,使用精密水平仪等检测工具,主要通过调整垫铁的方式精调机床床身的水平,使机床几何精度达到允许公差范围;调整机床床身水平,一般在0.04/1000mm的范围内。对于数控车床,除了水平和不扭曲达到要求外,还应进行导轨直线度的调整,确保导轨的直线度为凸的合格水平。对于数控铣床、加工中心机床,应确保运动工作台的水平也在合格范围内。水平调整合格后,可以进行数控机床的试运行。以数控车床为例简单说明水平调整的过程:粗调:把数控车床地角螺栓全部放松,卸除数控车床的支撑,用棉丝将两个水平仪和放置水平仪相应接触面擦拭干净。步骤1将两个框式水平仪以横向、纵向分别与X轴、Z轴平行的位置。水平仪放置位置见图步骤2观察水平仪的气泡方向,气泡在哪边,哪边就高。例如气泡在右边就调整左边的地角螺栓,依次类推,循环这种方法,观察平行于X轴的水平仪,使气泡处于居中位置,这样粗调就完成了。精调:步骤1数控车床通电,用指令移动溜板到主轴箱端,待稳定后观察水平仪中的气泡位置确定外围四个地角螺栓的高低,调平。步骤2用指令移动溜板到尾座端,根据水平仪气泡位置调节相应地角螺栓使其尽量居中。观察气泡位置,气泡偏向哪方,则对它相对方向的数车地角螺栓进行调节,(注:此时的气泡经过粗调后已偏离中心不大,所以在调地角螺栓时要轻要慢)。3步骤3依照步骤1、2进行反复操作。步骤4移动数控车床溜板从主轴箱端到尾座端,观察气泡位置,移动时气泡允许晃动,移动停止待稳定后水泡变化在2格之内,偏差值在0.04mm。最后将1-4螺母旋紧,再将中间5,6地角螺栓、螺母旋紧,使气泡尽量居中。数控车床精调操作完成。(2)数控车床静态精度调整通过对数控车床:①Z轴运动对主轴轴线的平行度;②在YZ平面内主轴与尾座两顶尖间轴线与Z轴移动的平行度(等高);③在ZX平面内主轴与尾座两顶尖间轴线与Z轴移动的平行度(要求尾座处向刀架方向偏);④主轴轴线对X轴移动的垂直度;⑤主轴锥孔轴线的径向跳动;⑥主轴定位端面跳动和径向跳动等检测可对其调整:第1、5、6为测主轴制造精度、主轴安装和轴承精度,可以调节主轴箱解决问题。第2、3、4为测机床导轨精度,可以通过修复或更换导轨解决。(二)检测数控机床定位精度及解决办法数控机床定位精度,是指机床各坐标轴在数控装置控制下运动所能达到的位置精度。数控机床的定位精度又可以理解为机床的运动精度。普通机床由手动进给,定位精度主要决定于读数误差,而数控机床的移动是靠数字程序指令实现的,故定位精度决定于数控系统和机械传动误差。机床各运动部件的运动是在数控装置的控制下完成的,各运动部件在程序指令控制下所能达到的精度直接反映加工零件所能达到的精度。1.定位精度主要检查内容及方法:(1)定位精度的检测工具有:数控机床测微仪和成组块规,标准4长度刻线尺和光学读数显微镜及双频激光干涉仪等。标准长度测量以双频激光干涉仪为准。数控车床回转运动检测工具有:360齿精确分度的标准转台或角度多面体、高精度圆光栅及平行光管等。(2)定位精度内容:①直线运动定位精度(包括X、r、Z、U、y、Ⅳ轴);②直线运动重复定位精度;③直线运动同机械原点的返回精度;④直线运动失动量的测定;⑤回转运动定位精度;⑥回转运动的重复定位精度;⑦回转轴原点的返回精度;⑧回转运动失动量测定;(3)定位精度的检测方法:①直线运动定位精度检测(包括X、Y、Z、U、V、W轴)直线运动定位精度一般都在机床和工作台空载条件下进行。按国家标准和国际标准化组织的规定(ISO标准),对数控机床的检测,应以激光测量为准。在没有激光干涉仪的情况下,对于一般用户来说也可以用标准刻度尺,配以光学读数显微镜进行比较测量。但是,测量仪器精度必须比被测的精度高1~2个等级。为了反映出多次定位中的全部误差,ISO标准规定每一个定位点按五次测量数据算平均值和散差+-3散差带构成的定位点散差带。②直线运动重复定位精度检测用的仪器与检测定位精度所用的相同。一般检测方法是在靠近各坐标行程中点及两端的任意三个位置进行测量,每个位置用快速移动定位,喷射泵,在相同条件下重复7次定位,测出停止位置数值并求出读数最大差值。以三个位置中最大一个差值的二分之一,附上正负符号,作为该坐标的重复定位精度,它是反映轴运动精度稳定性的最基本指标。③直线运动的原点返回精度检测,原点返回精度,实质上是该坐标轴上一个特殊点的重复定位精度,因此它的检测方法完全与重复定位精度相同。④直线运动的反向误差检测,直线运动的反向误差也叫失动量,它包括该坐标轴进给传动链上驱动部位(如伺服电动机、伺趿液压马达和步进电动机等)的反向死区,各机械运动传动副的反向间隙和弹性变形等误差的综合反映。误差越大,则定位精度和重复定位精度也越低。反向误差的检测方法是在所测坐标轴的行程内,预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移5动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差。在靠近行程的中点及两端的三个位置分别进行多次测定(一般为7次),求出各个位置上的平均值,以所得平均值中的最大值为反向误差值,喷胶棉。⑤回转工作台的定位精度检测,测量工具有标准转台、角度多面体、圆光栅及平行光管(准直仪)等,可根据具体情况选用。测量方法是使工作台正向(或反向)转一个角度并停止、锁紧、定位,以此位置作为基准,然后向同方向快速转动工作台,每隔30锁紧定位,进行测量。正向转和反向转各测量一周,各定位位置的实际转角与理论值(指令值)之差的最大值为分度误差。如果是数控回转工作台,应以每30为一个目标位置,对于每个目标位置从正、反两个方向进行快速定位7次,实际达到位置与目标位置之差即位置偏差,再按GB10931-89《数字控制机床位置精度的评定方法》规定的方法计算出平均位置偏差和标准偏差,所有平均位置偏差与标准偏差的最大值和与所有平均位置偏差与标准偏差的最小值的和之差值,就是数控回转工作台的定位精度误差。考虑到实际使用要求,一般对0、90、180、270等几个直角等分点进行重点测量,要求这些点的精度较其他角度位置提高一个等级。⑥回转工作台的重复分度精度检测,测量方法是在回转工作台的一周内任选三个位置重复定位3次,分别在正、反方向转动下进行检测。所有读数值中与相应位置的理论值之差的最大值分度精度。如果是数控回转工作台,要以每30取一个测量点作为目标位置,分别对各目标位置从正、反两个方向进行5次快速定位,测出实际到达的位置与目标位置之差值,即位置偏差,再按GB10931-89规定的方法计算出标准偏差,各测量点的标准偏差中最大值的6倍,就是数控回转工作台的重复分度精度。⑦回转工作台的原点复归精度检测,测量方法是从7个任意位置分别进行一次原点复归,测定其停止位置,以读出的最大差值作为原点复归精度。2.数控机床定位精度异常解决办法我们以数控车床Oi-MateMD为例用雷尼绍公司生产的激光干涉仪6进行精度测量为例如图。(1)系统参数的检测及补偿:步骤1:将参数写入开关打开。步骤2:将I/O通道置于所需传输手段的状态。步骤3:找到系统参数内每个轴的参考点的螺距补偿点号。(FANUC0i-MD所对应参数为03620)。步骤4:检查每个轴的设定螺距误差补偿倍率(FANUC0i-MD对应参数为3621补偿倍率为10倍)。每个轴的螺距误差补偿点的间隔参数3624,务必检查,运行激光干涉仪得到数据之后打印误差补偿表时需要补偿问隔。(2)坐标系的检测通过雷尼绍附带软件生成的数控程序调用绝对坐标(G54),而补偿参考的是机械坐标,所以运行程序前将绝对坐标(G54)与机械坐标统一以方便操作。(3)设备的连接以及摆放可以参照激光干涉仪厂家说明书进行操作。二、机床系统未优化电机运行异常在机床使用一段时间后产生误差,导致加工出零件表面质量不达标(震纹明显,排除机床系统刚度)此时应该考虑到机床电气参数未优化电机运行而导致的精度异常。如手触摸X轴伺服电机时感觉伺服电机抖动比较厉害,在停止时抖动不明显,尤其是点动方式下伺服抖动比较明显。分析认为,故障原因有两点,一是滚珠丝杠反向间隙很大;二是X轴伺服电机工作异常。利用FAUNC系统的伺服增益调节功能,对伺服电机进行调试。首先对存在的反向间隙进行补偿;调整伺7服增益参数及脉冲抑制功能参数,X轴电机的抖动消除,机床加工精度恢复正常,Z轴用同样的方式进行调整。三、螺距及螺纹切入点精度异常(一)螺距产生超差原因及解决途径我们平时加工零件时往往会碰到部分机床,在加工螺纹时非技术原因产生螺距精度误差。此时我们就要考虑数控机床使用一定时间后产生:⑴滚珠丝杠副处在进给系统传动链的末级,丝杠和螺母存在各种误差,如螺距累积误差、螺纹滚道型面误差、直径尺寸误差等,其中丝杠的螺距累积误差会造成机床目标值偏差;⑵滚珠丝杠在装配过程中,由于采用了双支承结构,使丝杠轴向拉长,造成丝杠螺距误差增加,产生机床目标值偏差;⑶在机床装配过程中,丝杠轴线与机床导轨平行度的误差会引起机床目标值偏差。丝杆本身螺距误差,无法通过间隙来补偿,而在FANUC数控系统可以通过丝杠螺距误差补偿方法来进行补偿,只要能够正确测量滚珠丝杠轴的螺距误差,就可以通过补偿来消除误差,达到提高机床加工螺纹精度,此方法使用简单,而且减少维修成本延长机床使用寿命,是一个十分有效方法,作为数控机床操作者或生产管理者必须掌握螺距测量及误差补偿方法。1.螺距误差补偿的作用螺距误差补偿通过调整数控系统的参数增减指令值的脉冲数,实现机床实际移动距离与指令移动距离相接近,以提高机床的定位精度。螺距误差补偿只对机床补偿段起作用,在数控系统允许的范围内起到补偿作用。2.螺距误差补偿方法通过设定螺距误差补偿数据,对每个轴的检测单位进行补偿。将参考点返回的位置作为补偿原点,以设定每个轴上的补偿间隔,将相当于补偿点数量的补偿值设定在螺距误差补偿数据中。螺距误差补偿数据也可用外部I/O设备(如HandyFile)设定(见用户手册),