高二文科数学数列复习题1.数列{an}的通项公式an=2n+5,则此数列(A).A.是公差为2的等差数列B.是公差为5的等差数列C.是首项为5的等差数列D.是公差为n的等差数列2、在△ABC中,三内角A,B,C成等差数列,则角B等于(B).A.30°B.60°C.90°D.120°3、在等比数列{an}中,a2=8,a5=64,,则公比q为(A)A.2B.3C.4D.84、已知等比数列}{na的公比为正数,且3a·9a=225a,2a=1,则1a=(B)A.21B.22C.2D.25、一个等差数列的前4项是a,x,b,2x,则ab等于(C).A.14B.12C.13D.236、设nS为等比数列na的前n项和,已知3432Sa,2332Sa,则公比q(B)(A)3(B)4(C)5(D)67、等差数列{na}的公差不为零,首项1a=1,2a是1a和5a的等比中项,则数列的前10项之和是(B)A.90B.100C.145D.1908、已知{an}为等差数列,a2+a8=12,则a5等于(C).A.4B.5C.6D.79、在等差数列{an}中,若a2+a4+a6+a8+a10=80,则a7-12a8的值为(C).A.4B.6C.8D.1010、已知数列{an}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为(D).A.3B.±3C.-33D.-311.在等差数列{an}中,S10=120,那么a1+a10的值是(B).A.12B.24C.36D.4812、已知数列{an}的前n项和Sn=n2-9n,第k项满足5ak8,则k等于(B).A.9B.8C.7D.613、已知等差数列{an}中,a32+a82+2a3a8=9,且an0,则S10为(D).A.-9B.-11C.-13D.-1514、等差数列{an}的前n项和为Sn,已知am-1+am+1-am2=0,S2m-1=38,则m等于(C).A.38B.20C.10D.915、已知等比数列{an}满足a1+a2=3,a2+a3=6,则a7等于(A).A.64B.81C.128D.24316、在等比数列{an}中,a3=12,a2+a4=30,则a10的值为(D).A.3×10-5B.3×29C.128D.3×2-5或3×291、若数列{an}是等差数列,a3,a10是方程x2-3x-5=0的两根,则a5+a8=_____3___.2、设等比数列{an}的前n项和为Sn,a1=1,S6=4S3,则a4=_____3___.3、在等比数列{an}中,若an0,a1·a100=100,则lga1+lga2+lga3+…+lga100=___100_____.4、数列{an}中,a1=1且an+1=3an+2,则an=___2·3n-1-15、在等差数列{an}中,a10,公差d0,a5=3a7,前n项和为Sn,若Sn取得最大值,则n=_____7、8___.6、已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=_____1___.1、已知{an}为等差数列,且a3=-6,a6=0.(1)求{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和公式.解(1)设等差数列{an}的公差为d.因为a3=-6,a6=0,所以a1+2d=-6,a1+5d=0.解得a1=-10,d=2.所以an=-10+(n-1)×2=2n-12.(2)设等比数列{bn}的公比为q.因为b2=a1+a2+a3=-24,b1=-8,所以-8q=-24,q=3.所以数列{bn}的前n项和公式为Sn=b11-qn1-q=4(1-3n).2.已知在数列na中,已知01a,且Nnaann,631.(1)求32,aa(2)求数列na的通项公式;(3)设Nnancnn),3(,求和:)(.......21NncccSnn.解:(1)24,632aa(2)Nnaann),3(331为公比的等比数列为首项,是一以数列333a}3a{1n…………5分Nnan33a,33nnn(3)Nnancnn,3n)3(nn1n213n3)1n(......323nS1nn323n3)1n(......3233nS…………………10分1n1n1nn323n233213n3......3332-nS…………13分43341-2n1nnS…………14分6、已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*),在数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.(1)求数列{an},{bn}的通项公式;(2)记Tn=a1b1+a2b2+…+anbn,求Tn.解(1)由Sn=2an-2,得Sn-1=2an-1-2(n≥2),两式相减得an=2an-2an-1,即anan-1=2(n≥2),又a1=2a1-2,∴a1=2,∴{an}是以2为首项,以2为公比的等比数列,∴an=2n.∵点P(bn,bn+1)在直线x-y+2=0上,∴bn-bn+1+2=0,即bn+1-bn=2,∴{bn}是等差数列,∵b1=1,∴bn=2n-1.(2)∵Tn=1×2+3×22+5×23+…+(2n-3)2n-1+(2n-1)2n①∴2Tn=1×22+3×23+5×24+…+(2n-3)2n+(2n-1)·2n+1②①-②得:-Tn=1×2+2(22+23+…+2n)-(2n-1)·2n+1=2+2·22-2n·21-2-(2n-1)2n+1=2+4·2n-8-(2n-1)2n+1=(3-2n)·2n+1-6∴Tn=(2n-3)·2n+1+6.