五年级奥数第24讲-行程问题1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第24讲行程问题(一)路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间×速度,时间=路程÷速度,速度=路程÷时间。这一讲就是通过例题加深对这三个基本数量关系的理解。例1一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。已知每辆车长5米,两车间隔10米。问:这个车队共有多少辆车?分析与解:求车队有多少辆车,需要先求出车队的长度,而车队的长度等于车队115秒行的路程减去大桥的长度。由“路程=时间×速度”可求出车队115秒行的路程为4×115=460(米)。故车队长度为460-200=260(米)。再由植树问题可得车队共有车(260-5)÷(5+10)+1=18(辆)。例2骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。如果希望中午12点到,那么应以怎样的速度行进?分析与解:这道题没有出发时间,没有甲、乙两地的距离,也就是说既没有时间又没有路程,似乎无法求速度。这就需要通过已知条件,求出时间和路程。假设A,B两人同时从甲地出发到乙地,A每小时行10千米,下午1点到;B每小时行15千米,上午11点到。B到乙地时,A距乙地还有10×2=20(千米),这20千米是B从甲地到乙地这段时间B比A多行的路程。因为B比A每小时多行15-10=5(千米),所以B从甲地到乙地所用的时间是20÷(15-10)=4(时)。由此知,A,B是上午7点出发的,甲、乙两地的距离是15×4=60(千米)。要想中午12点到,即想(12-7=)5时行60千米,速度应为60÷(12-7)=12(千米/时)。例3划船比赛前讨论了两个比赛方案。第一个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以2.5米/秒和3.5米/秒的速度各划行比赛时间的一半。这两个方案哪个好?分析与解:路程一定时,速度越快,所用时间越短。在这两个方案中,速度不是固定的,因此不好直接比较。在第二个方案中,因为两种速度划行的时间相同,所以以3.5米/秒的速度划行的路程比以2.5米/秒的速度划行的路程长。用单线表示以2.5米/秒的速度划行的路程,用双线表示以3.5米/秒的速度划行的路程,可画出下图所示的两个方案的比较图。其中,甲段+乙段=丙段。在甲、丙两段中,两个方案所用时间相同;在乙段,因为路程相同,且第二种方案比第一种方案速度快,所以第二种方案比第一种方案所用时间短。综上所述,在两种方案中,第二种方案所用时间比第一种方案少,即第二种方案好。例4小明去爬山,上山时每小时行2.5千米,下山时每小时行4千米,往返共用3.9时。问:小明往返一趟共行了多少千米?分析与解:因为上山和下山的路程相同,所以若能求出上山走1千米和下山走1千米一共需要的时间,则可以求出上山及下山的总路程。因为上山、下山各走1千米共需所以上山、下山的总路程为在行程问题中,还有一个平均速度的概念:平均速度=总路程÷总时间。例如,例4中上山与下山的平均速度是例5一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?解:设等边三角形的边长为l厘米,则蚂蚁爬行一周需要的时间为蚂蚁爬行一周平均每分钟爬行在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)÷2,水流速度=(顺流速度-逆流速度)÷2。此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。例6两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。求这条河的水流速度。解:水流速度=(顺流速度-逆流速度)÷2=(418÷11-418÷19)÷2=(38-22)÷2=8(千米/时)答:这条河的水流速度为8千米/时。练习241.小燕上学时骑车,回家时步行,路上共用50分钟。若往返都步行,则全程需要70分钟。求往返都骑车需要多少时间。2.某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时。问:他步行了多远?3.已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒。求火车的速度和长度。4.小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟。已知小红下山的速度是上山速度的1.5倍,如果上山用了3时50分,那么下山用了多少时间?5.汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地。求该车的平均速度。6.两地相距480千米,一艘轮船在其间航行,顺流需16时,逆流需20时,求水流的速度。7.一艘轮船在河流的两个码头间航行,顺流需要6时,逆流需要8时,水流速度为2.5千米/时,求轮船在静水中的速度。

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功