分位数回归视角下的金融市场风险度量研究进展

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

20096()No.62009(94)JOURNALOFFUZHOUUNIVERSITY(PhilosophyandSocialSciences)SerialNo.94:2009-05-08:教育部人文社会科学青年基金资助项目(07JC790046);福建省自然科学基金资助项目(2008J0192);福建省社会科学规划项目(2008B037):唐勇,男,江苏淮安人,福州大学管理学院副教授,博士;寇贵明,男,福建泉州人,福州大学管理学院硕士研究生分位数回归视角下的金融市场风险度量研究进展唐勇寇贵明(,350108):基于分位数回归的金融市场风险度量方法是一个崭新的研究领域因具有准确描述尖峰厚尾等数据特征和无需对序列分布做特定假设的优点,分位数回归而倍受关注梳理基于分位数回归的四种风险度量方法,包括表达式参数估计相应的检验过程存在的问题,以及这些度量方法在国内的研究状况,可为提高我国金融业风险管理水平提供必要的理论指导和实践方法:分位数回归;风险度量;VaR;金融市场:F830:A:1002-3321(2009)06-0039-06,J.P.Morgan2090VaR(ValueatRisk)VaR,VaRtGEDLogistic,VaR,,,VaR,,,,,,,KoenkerBassett[1],(OLS)(meanregression),,:;;;KoenkerBassett,,,39,:Y,FY(y),FY(y)=P(Yy)=th,FY(y)=y=F-1Y()=inf{Y|FY(y)!}(OLS)min∀Rn#ni=1(yi-x∃i)2,(medianregression),med(y|x)=xT(0.5),(0.5)min∀Rnyi-x∃iKoenkerBassett,:min∀Rn#ni=1(yi-!(xi,))(1)(checkfunction)(x)=x,x0(-1)x,x0∀(0,1),()Koenker,,[2]OLS,;,OLSLAD(leastabsolutedeviation),,,,,,,,,,,,,(一)VaR与一致性风险度量方法J.P.Morgan2090VaR,(VaR),(maximumpossibleloss),VaRVaR:,VaR;,VaR;,VaR,Artzner,EberHeath(Coherentmeasureofrisk)[3],,,RockfellarUryasev(CVaR)[4],∀,VaR,CVaR,CarloAcerbiDirkTascheExpectedShortfall(ES)CVaR[5]AcerbiES,(SpectralRiskMeasure),,[6]WangVaRVaR(Tail-VaR),,VaRCVaRDRM(DistortionRiskMeasure)[7][8],Copula,40(二)基于分位数回归(quantileregression,QR)的风险度量方法,,,,ARCHQuantileCAViaRCAREEWQR1.ARCHQuantile风险度量方法KoenkerZhao,ARCHQuantile[9],:yt=∀0+∀1yt-1+%+∀pyt-p+#t#t=(∃0+∃1#t-1+%+∃q#t-q)ztth,:Q#(It-1)=X∃t∀()th()VaR:-VaRt()=!t+X∃t∀()(2)[10]:Xt=(1,#t-1,%,#t-q)∃,∀()=(∃0Qz(),∃1Qz(),%,∃qQz())∃,Qz()zt∀()Q.R.,(1):∀^()=argmin#(#t-X∃t∃):∃=(∃0,∃1,%,∃q)∃ARCH,,GARCH2.CAViaR风险度量方法EngleManganelliCAViaR(ConditionalAutoregressionValueatRisk)[11],VaR(VaR),VaRt(1)CAViaRCAViaR:VaRt=0+#pi=1iVaRt-i+l(p+1,%,p+q;%t-1):Adaptive:VaRt=VaRt-1+1{[1+exp(G[yt-1-VaRt-1])]-1-&}SymmetricAbsoluteValue:VaRt=0+1VaRt-1(&)+2yt-1AsymmetricSlope:VaRt=1+2VaRt-1(&)+3(yt-1)++4(yt-1)-IndirectGARCH(1,1):VaRt=(1+2VaR2t-1+3y2t-1)1/2,Kuester,IndirectAR-GARCHCAViaR[12]:VaRt(&)=∀1rt-1+(0+1(VaRt-1-∀1rt-2)2+2(rt-1-∀trt-2)2)1/2,i0VaR,,(2)CAViaREngleManganelliCAViaR,,105,[0,1][-1,0],QR(Quantileregressionsum),quasi-Newton,10,QR,QR(3)CAViaR,EngleManganelliHit:Hitt()=I(yt-VaRt)-&ytHitt()1-&,-&Hit=X∋+utut=-&,(1-&)1-&,&X=(Hitt-i,VaRt)Hits,H0&∋=0,:∋^OLS=(X∃X)-1X∃Hit~N(0,&(1-&)(X∃X)-1)(DynamicQuantileTest,DQ):DQ=∋^∃OLSX∃X∋^OLS&(1-&)~(2(k+1)413.CARE风险度量方法,Koenkerexpectile,expectilesTaylorexpectilesVaRES,ES[13]expectile&expectile&Efron,ALS(Asymmetricleastsquares)[14]TaylorES:ESt(&)=(1+(1-2)&)!t()-(1-2)&E(yt)CAViaRCARE(ConditionalAutoregressiveExpectiles),SymmetricAbsoluteValueCARE:!t()=0+1!t-1()+2yt-1ES:ESt(&)=∃0+∃1ESt-1(&)+∃2yt-1∃i=(1+(1-2)&)i,i=0,1,2CARECAViaR,QRALS,0.0001,CAViaR,HitDQ,,EfronTibshiranibootstrap[15]4.EWQR风险度量方法,TaylorVaRESEWQR(ExponentiallyWeightedQuantileRegression)[16]),,:min#Tt=1)T-t(y-x∃t)(&-I(ytx∃t)):)T-t):)∀[0.8,1],0.005QR,)TaylorVaRGJR-GARCHCAViaRES,,EWQRES:ES^T=-1&#Tt=1)T-t#Tt=1)T-t(yt-x∃t^)(&-I(ytx∃t^))TaylorYuJones[17],Qt(&)=x∃t,:min#Tt=1Kh1(x-xt)∋+(-((y-x∃t)(&-I(ytx∃t))Wh2(y-yt)dyWh2(y-yt)Kh1,Wh2,:min#Tt=1)T-t(&(yt-x∃t)+(x∃t-yt)∗((x∃t-yt)/h2)+h2+((x∃t-yt)/h2))∗+Taylor,,,,,,,,,:(),[18],,Bootstrap42,;[19]()CAViaR,CAViaRVaR[20],(VaR),)VaR∗VaR,[21];()VaR,VaR[22],,,[23]TARCH2-CAViaR[24]CAViaR,,,,,TARCH2-CAViaR,,,VQR,CAREEWQR,,,VaRES,(DRM),,:[1]Koenker,R.,G.W.Bassett,)RegressionQuantiles∗,Econometrica,vo.l46,no.1(Jan.1978),pp.3350.[2]Koenker,R.W.,QuantileRegression.Cambridge,UK:CambridgeUniversityPress,2005.[3]Artzner,P.,Delbaen,F.,Eber,J.-M.,Heath,D.,)CoherentMeasuresofRisk∗,MathematicalFinance,vo.l9,no.3(1999),pp.203-228.[4]P.Krokhma,lJ.Palmquist,S.Uryasev.,)PortfolioOptimizationwithConditionalValue-at-RiskObjectivbesandConstaints∗,JournalofRisk,vo.l42,no.2(2002),pp.124129.[5]Acerb,iC.,NordioC.,SirtoriC.,)ExpectedShortfallasaToolforFinancialRiskManagement∗,(2001).[6]Acerb,iC.,)SpectralMeasuresofRisk:aCoherentRepresentationofSubjectiveRiskAversion∗,JournalofBankingandFinance,vo.l26,no.7(2002),pp.1505-1518.[7]WangS.S.,)InsurancePricingandIncreasedLimitsRatemakingbyProportionalHazardsTransforms∗,Insurance:MathematicsandEconomics,no.17(1995),pp.43-54.[8]WangS.S.,)PremiumCalculationbyTransformingtheLayerPremiumDensity∗,Bulletin,no.26(1996),pp.71-92.[9]Koenker,R.andZhao,Q.,)ConditionalQuantileEstimationandInferenceforARCHmodels∗,EconometricTheory,no.12(1996),pp.793-813.[10]此处表示左尾分位数,+Var表示损伯[11]Engle,R.F.,S.Manganell,i)CAViaR:ConditionalAutoregressiveValueatRiskbyRegressionQuantiles∗,Journalof43BusinessandEconomicStatistics,no.22(2004),pp.367-381.[12]Kuester,K.,S.Mittnik,M.S.Paolella,)Value-at-RiskPrediction:AComparisonofAlternativeStrategies∗,JournalofFinancialEconometrics,no.4(2006),pp.53-89.[13]Taylor,J.W.,)EstimatingValueatRiskandExpectedShortfallUsingExpectiles∗,JournalofFinancialEconometrics,no.6(2008),pp.231-252.[14]Efron,B.,)RegressionPercentilesUsingAsymmetricSquaredErrorLoss∗,StatisticaSinica,no.1(1991),pp.93-125.[15]Efron,B.,J.Tibshiran,iAnIntroductiontotheBootstrap,NewYork:ChapmanandHal,l1993.[16]Taylor,J.W.,)EstimatingValueatRiskUsingExponentially

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功