无处不在的波从科学的角度来说,电磁波是能量的一种,凡是能够释出能量的物体,都会释出电磁波。正像人们一直生活在空气中而眼睛却看不见空气一样,人们也看不见无处不在的电磁波。电磁波就是这样一位人类素未谋面的“朋友”。电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变动的电会产生磁,变动的磁则会产生电。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。机械波,机械振动在介质中传播而形成的波。按介质中质点振动方向和波传播方向间的关系,可分为横波和纵波两种:质点振动方向与波传播方向垂直的叫横波;在一条直线上的则叫纵波。固体中既能传播横波又能传播纵波;液体和气体中只能传播纵波。机械波的产生:机械振动在介质中的传播过程叫机械波.机械波产生的条件有两个:一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质。物质波,物质波(德布罗意波),是概率波,指空间中某点某时刻可能出现的几率其中概率的大小受波动规律的支配。比如一个电子,如果是自由电子,那么它的波函数就是行波,就是说它有可能出现在空间中任何一点,每点几率相等。如果被束缚在氢原子里,并且处于基态,那么它出现在空间任何一点都有可能,但是在波尔半径处几率最大。对于你自己也一样,你也有可能出现在月球上,但是和你坐在电脑前的几率相比,是非常非常小的,以至于不可能看到这种情况。这些都是量子力学的基本概念,非常有趣。波或波动是扰动或物理信息在空间上传播的一种物理现象,扰动的形式任意,传递路径上的其他介质也作同一形式振动。波的传播速度总是有限的。除了电磁波和引力波能够在真空中传播外,大部分波如机械波只能在介质中传播。波速与介质的弹性与惯性有关,但与波源的性质无关,在空间以特定形式传播的物理量或物理量的扰动。由于是以特定的形式传播,这个物理量(或其扰动,下同)成为空间位置和时间的函数,而且是这样的函数,即在时间t出现在空间r处周围的分布,会在时间(t+t┡)出现在空间(r+vt┡)的周围。v一般说是个常矢量,就是有关物理量(或其扰动)的传播速度。物理量函数称为波函数,数学上它是一个叫波动方程的在特定边界条件下的解。波的传播总伴随着能量的传输,机械波传输机械能,电磁波传输电磁能。单位时间内通过垂直于传播方向的单位面积的能量称为波的能流密度,常用来描述波的强度,能流密度与振幅的平方成正比。一般情况下必须区分波的相位传播方向和能量传播方向。相同相位(即波面)的传播方向与波面垂直,称为波的法线方向,相位(或波面)的传播速度称为相速度或法线速度。对各向同性介质,波的法线方向与能量传递方向合二为一,相速度和能量传播速度也相同。对各向异性介质,波的法线方向与能量传播方向一般不重合,相速度与能量传播速度也不相等。在波动过程中,媒质的各个质点只是在平衡位置附近振动,并不沿着振动传播的方向迁移。因此,波是振动状态的传播,不是物质本身的传播。物理上分类:按性质分:两种---------机械波、电磁波。机械波是由扰动的传播所导致的在物质中动量和能量的传输。一般的物体都是由大量相互作用着的质点所组成的,当物体的某一部分发生振动时,其余各部分由于质点的相互作用也会相继振动起来,物质本身没有相应的大块的移动。例如,沿着弦或弹簧传播的波、声波、水波。我们称传播波的物质叫介质,它们是可形变的或弹性的和连绵延展的。对于电磁波或引力波,介质并不是必要的,传播的扰动不是介质的移动而是场。按振动方向与传播方向的关系来分:三种--------横波、纵波、球面波。质点振动的方向跟波的传播方向垂直的波叫横波,质点振动的方向跟波的传播方向平行的波叫纵波。按波的形状来分:不定,波的形状象什么,就叫什么波。如方波(有的也叫矩形波)、锯齿波、脉冲波、正弦波、余弦波等。按波长来分:长波、中波、中短波及微波。按强度来分:常波(普通波)、冲击波。(其中在声波中还有超声波和次声波)等等,没有统一的要求,一般在什么条件下用什么分类方法。波的形式是多种多样的。它赖以传播的空间可以是充满物质的,也可以是真空(对电磁波而言)。有些形式的波能为人们的感官所感觉,有些却不能。人们最熟悉的是水面波,它有几种类型。例如,在深水的表面,有主要以重力为恢复力的表面波,典型波长为1米到100米;有主要以表面张力为恢复力的涟波,波长约短于0.07米。这两种波常具有正弦形状。在深水内部则有内重力波,出现在海洋内有密度分层的区域。不只在海洋里,在大气层里,也可以出现内重力波。空气中更广泛遇到的,当然是声波。声波中传播的是空气中压强、密度等物理量的扰动,扰动指对无声波时原有值的偏离。波阵面上的各点可以看作是许多子波的波源,这些子波的包络面就是下一时刻的波阵面。原理的示意图见图3(见惠更斯-菲涅耳原理)。同干涉有关的是波的相干性。这是在激光出现前后,特别是之后,引起人们重视的一个概念。并不是任意的两列波都可以产生干涉,而需要满足一定的条件,称为相干条件,主要是要有相同的频率和固定的相位差。两个普通光源产生的光波很难产生干涉。因为光源有一定的面积,包含了许多的发光中心,而对于普通光源,这些发光中心发光时并不协调,相互间并无联系。为此,在经典的杨氏干涉实验中,有必要从同一个光源分出两束光波,以取得干涉。激光器则不然,它的多发光中心是相位关联的,它所发射的波虽还不是单频,但频带非常窄。这样,人们说普通光源所辐射的波相干性差,而激光器所辐射的则相干性好。一个波的相干性实际上是这个波能够到什么精确程度用简谐波来代表的描述。这是个定性的提法。要定量地描述相干性(严格讲是相干程度),需要用统计观点,用两点上不同时刻间扰动的时间平均。可以在一定程度上把相干性分成两个部分:一个是空间相干性,起因于光源占据有限空间;一个是时间相干性,起因于辐射波的有限频宽。几个波可以叠合成一个总的波,反之,一个波也可以分解为几个波之和。根据傅里叶级数表示法,任何一个函数都可以表示为一系列不同频率正弦和余弦函数之和,所以任何波形的波都可以归结为一系列不同频率简谐波的叠加。这种分析方法称频谱分析法,它为认识一些复杂的波动现象提供了一个有力的工具。所有的波都携带能量。水面波把水面的上下振动传给波阵面前方原来是静止的水面,这意味着波带有动能和势能。波所携带的能量常用波内单位体积所具有的能量来计量,叫波的能量密度。在单位时间内通过垂直于波矢的单位面积所传递的能量叫波的强度或能流密度,它是波的能量密度和波的传播速度的乘积。当弹性波传播到介质中的某处时,该处原来不动的质点开始振动,因而具有动能,同时该处的介质也将产生形变,因而也具有势能光波是光子在空间出现的概率可以通过波动的规律确定。在均匀的媒质中,波沿直线传播。传播中波可能遇到新的环境。一个简单的情况是波由一种均匀的媒质射向另一种均匀媒质,而且两个媒质的界面是平面的。入射到界面的波(入射波),一部分在界面上被反射回第一媒质(称为反射波),另一部分则折入第二媒质(称为折射波)。众所周知,反射角恒等于入射角,而折射角的大小依赖于两个媒质的有关物理量的比。对于电磁波,这个物理量是介电常数同磁导率的乘积的平方根。对于其他的波有时情况要复杂些。例如,当固体中声波从一个固体媒质投射到另一固体媒质时,在第一媒质中,入射波将被反射出两个波,而不是一个,其中一个是纵波,一个是横波。进入第二媒质时也将折射出两个波(图4)。两种反射波的反射角和两种折射波的折射角都有一定的规律。当波在传播中遇到一个实物,这时不仅出现单纯的反射和折射,还将出现其他分布复杂的波,包括衍射波。这种现象统称散射(在有些文献里,散射同衍射两个概念是不严格区分的)。用雷达追踪飞机,用声呐探寻潜艇,便属于这个情况。提起波时一般含意指不断前进的波,但在特殊情况,也可以建立起似乎囚禁在某个空间的波。为了区分,称前者为行波,称后者为驻波。两列振幅和频率都相同,而传播方向相反的同类波叠加起来就形成驻波。常用的建立方法是让一列入射波受到媒质边界的反射,以产生满足条件的反向波,让二者叠加形成驻波。例如,简谐波在驻波腔(图5)内来回反射,驻波腔的长度是半波长的整数倍,腔端每个界面在反射时产生π相位差。驻波中振幅恒为零的点称为波节,相邻波节相距半个波长,两个波节之间的振幅按正弦形分布。振幅最大的点称为波腹。驻波的应用也很广,如管弦乐器便利用了驻波。此外它还导出了一个重要的概念,即频率的分立。要求两个界面之间的距离(d)是半波长的整数倍(n),可以理解为,只有那些频率为n(v/2d)的波才能建立驻波。这个频率分立的概念对量子力学的创立曾起了启发作用。在通常的媒质中,简谐波的相速度是个常数。例如,不论什么颜色的光在真空中的相速,总是恒量,等于2.99792458×10米/秒。但在某些媒质中,相速度因频率(或波长)而异。这种现象称为色散或频散。而对于非线性波,相速度还是振幅的函数。波的色散由媒质的特性决定,因此常把媒质分为色散的或非色散的。媒质会导致波的色散,一个原因是它的尺寸有限,这种色散叫位形色散。例如,在尺寸比波长大得多的固体块内,弹性波的相速度是常数,可是,对于沿直径同波长可比拟的棒面传播的弹性波,同样材料的棒便是色散的了。媒质是色散的另一个起因在于它的内部的微观结构。有的媒质不论其形状如何,对于某些频率范围的某些种类的波总是色散的。例如,有些媒质内部的带电粒子(如电子),受入射可见光的电场激励而振动,从而反作用于这个光,导致它的色散(见电子论)。正由于水的色散性,雨后才有可能映出彩虹。单一频率的波,它的传播速度是它的相速度。实际存在的波则不是单频的,如果媒质对这个波又是色散的,那么,传播中的波,由于各不同频率的成分运动快慢不一致,会出现“扩散”。但假若这个波是由一群频率差别不大的简谐波组成,这时在相当长的传播途程中总的波仍将维持为一个整体,以一个固定的速度运行。这个特殊的波群称波包,这个速度称为群速度。与相速度不同,群速度的值比波包的中心相速度要小,二者的差同中心相速度随波长而变化的平均率成正比。群速度是波包的能量传播速率,也是波包所表达信号的传播速率。均匀(宏观看)而各向同性的媒质是简单的传播媒质,不少的媒质要复杂些。有些媒质是各向同性的但是不均匀。一个简单的例子是海洋中的水,由于温度、盐度、随深度而增长的压强等因素,海水带是分层的。声波的传播速度是这些因素的函数,因此随层而异,其结果是声波的传播途径远不是直线。有可能在声源前方海洋中出现没有声波的区域。比分层更不均匀的媒质,在海洋中以及在其他环境中,也是常见的。波在传播过程中,除在真空中,是不可能维持它的振幅不变的。在媒质中传播中,波所带的能量总会因某种机理或快或慢地转换成热能或其他形式的能量,从而不断衰弱,终至消失。反过来,有时可以人为地把其他形式的能量连续供给传播中的波,如微波行波管中的慢电磁波或压电半导体内的超声波,使这些波不仅不减弱,而且还增强。但是,如不补给能量,媒质中传播的波总会逐渐衰减的。不同种类的波在不同种类媒质中的衰减机理是很不一样的。即使同一种波在同一种媒质里传播时,衰减的机理也可能随频率而异。波同媒质内部某些微观结构的相互作用,引起波的衰减,而这个相互作用也同时导致色散。在这种情况下,衰减和色散是相关联的。关于这种相互作用,可以提到一个相当普遍存在的规律,叫弛豫现象。弛豫是指两个态的平衡需要有限的时间,而不是在一瞬间来完成。并不是所有的波的衰减都由于微观因素。波的衰减也有起源于宏观的原因的,例如,声波在粘滞流体中衰减的部分原因是摩擦生热(见声吸收)。还有的时候,波是分散了,而不是真正的衰弱,一个例是平面波被途中许多小障碍物所折射,一部分转了向,从平面波的原来运动方向看,波的能量变小了。波又有粒子性,在碰撞时遵守能量和动量守恒定律。这种情况一般发生在波与物质有相互作用时。另一方面,静止值量不为零的微观粒子,在传播时也会具有波的特性。这样扩大了波的范围。波动方程以数学语言来表达波的特征,它给出了波函数随空间坐标和时间的变化关系。通过对