欢迎各位老师同学参加草业科学硕士研究生读书报告草业科学硕士研究生读书报告植物盐胁迫适应机制的研究进展报告人:夏传红时间:2008年12月◆引言◆抗氧化酶的诱导◆植物激素的诱导◆离子平衡、离子区域化及拒盐作用◆渗透调节◆结束语在盐胁迫下,植物体内的主要生理过程都会受到影响,例如光合作用、蛋白质合成、能量和油脂代谢等。盐胁迫对植物的破坏作用主要是通过渗透胁迫、离子毒害、营养失衡,以及盐胁迫的次级反应如氧化胁迫等过程来实现。植物在盐胁迫下主要表现为生长减慢,代谢受抑制,植物的干重显著降低,叶子转黄,严重时出现盐斑,叶子萎蔫,植株死亡。引言全球有各种盐渍土约9.5亿公顷,占全球陆地面积的10%,而我国盐渍土约5.4亿亩,占全国耕地的1/4。大面积的盐渍化土地严重制约了农业生产,对其进行改造实际操作中常采用选育和培育抗盐品种来改良盐碱地,因此对植物抗盐性的研究具有重要意义。研究植物抗盐性的关键是探明植物对盐胁迫的适应机制,为此国内外众多学者做了大量的研究工作,发现植物适应盐胁迫的生理机制主要包括:提高抗氧化酶系统的活性,消除自由基对植物机体的伤害;改变体内各种激素含量;离子选择性吸收;离子区域化;拒盐作用及合成渗透调节物质。抗氧化酶的诱导盐胁迫由于对各种代谢活动进行渗透调节,造成植物严重水匮乏,这种水匮乏导致活性氧(ROS)的形成,如超氧化物、过氧化氢、羟基氢氧基活性氧自由基和氧气等。Mittova等(2002)研究发现植物生长发育过程中胁迫环境下植物细胞结构(如:叶绿体、线粒体、过氧化物酶体)中产生的大量活性氧(ROS)会造成叶绿素、膜质、蛋白质和核酸的氧化伤害从而破坏正常的生理代谢。为避免ROS的积累,具较强抗盐性的植物体内的抗氧化酶系统在盐胁迫下活性增强,抗氧化酶的活性,如过氧化氢酶(CAT),抗坏血酸盐过氧化物酶(APX),愈疮木酚过氧化物酶(POD),谷胱甘肽还原酶(GR),和超氧化物歧化酶在盐胁迫时含量增高,并且这些酶的浓度和遭受的盐胁迫的程度有很好的相关性,可清除过量ROS。在拟南芥和柑橘中,一种磷脂谷胱甘肽过氧化物酶(PHGPX)在盐胁迫条件下时含量增加。。而且在柑橘中,Cu/Zn—SOD酶活性,谷胱甘肽过氧化物酶活性,和胞液APX活性都升高。在盐胁迫下培养的拟南芥缺乏维生素C,植物体内维生素C的浓度只是正常野生型的30%,并且明显对氧化胁迫有更高的敏感度。对转基因模型的研究进一步证明了植物在胁迫时抗氧化酶活性的增强,并具有更高的抗氧化防御功能。盐胁迫能诱导某些抗氧化酶及其信使RNA的表达:Stevens等(1997)研究发现盐胁迫下甜橙愈伤组织和叶片中有磷脂脱氢谷胱甘肽过氧化物酶(PHGPX)合成。在NaC1浓度为100mmol·L-1的环境下,金盏菊和玉米叶片中谷胱甘肽还原酶(GR)和抗坏血酸过氧化物酶(APX)活性增强(Chaparzadeheta1,2004;Netoeta1,2006)Mittova等(2003)在研究番茄类植物叶片细胞线粒体抗氧化酶系统时发现,普通番茄在NaCI浓度100mmol·L-1条件下,其叶片细胞线粒体内的膜质过氧化反应加强,与对照相比超氧化物歧化酶(SOD)活性降低50%,APX和谷胱甘肽过氧化物酶(GPX)活性未发生改变;但抗盐能力较强的潘那利番茄在相同的盐胁迫下其线粒体中SOD、APX、单脱氢抗坏血酸还原酶(MDHAR)、脱氢抗坏血酸还原酶(DHAR)、GPX的活性与对照相比分别增强60%、180%、170%、30%和32%,但GR的活性降低60%。盐胁迫使普通番茄叶绿体中过氧化氢(H202)的含量增加,膜质氧化反应加强,但在潘那利番茄的叶绿体中情况则相反,这是植物体内抗氧化酶种类及活性的差异所引起的。盐胁迫下抗氧化酶系统活性的提高对植物的抗盐能力具有重要贡献,某些过表达抗氧化酶基因的植物也证明了抗氧化酶在抗盐胁迫中的重要作用。研究发现盐胁迫条件下,转基因烟草通过过表达基因GlsGPX(编码谷胱甘肽s转移酶GST和谷胱甘肽过氧化物酶GPX),促进植物对ROS的清除,从而增强了其抗盐性(Roxaseta1,2000);拟南芥突变体pstl(光合自养抗盐突变体)体内的SOD和APX活性高于野生拟南芥,因而获得较强的抗盐性(Tsuganeeta1,1999)。盐生环境使植物的正常生长发育受阻,但植物在盐胁迫条件下可通过改变体内各种激素的含量来维持其正常发育。柯玉琴等(2002)发现随盐浓度的提高,不耐盐甘薯品种叶片的生长素(IAA)水平下降的幅度大于中等耐盐和耐盐品种。研究发现高盐胁迫下,植物体内脱落酸(ABA)和细胞分裂素(CTK)的含量增加(Mdesuquy,1998;Vaidyanathaneta1,1999)植物激素的诱导ABA对盐胁迫诱导基因的转变起关键作用,ABA能诱导植物对盐胁迫、冷害和渗透胁迫等逆境条件产生适应性反应。高盐浓度可以引发植物激素譬如ABA和细胞分裂素的增加,许多植物在盐胁迫下体内的ABA含量明显上升,但在不同器官上升的程度不同,如相同盐胁迫下玉米根系中ABA的增加量远大于叶片。ABA能诱导并增强某些抗氧化酶的活性,绿藻在盐胁迫下经ABA处理后其体内ROS的含量减少,过氧化氢酶(CAT)和APX的活性显著增强。研究证明ABA还可以缓解盐胁迫对植物生长、同化和光合作用的抑制(Popovaeta1,1995)。在盐胁迫下,ABA能通过迅速改变细胞间的离子流量来促使气孔关闭。实验研究显示,可逆性蛋白质磷酸化,胞液中钙离子浓度的改变和作为ABA信号转换媒介环境的酸碱度对植物生理的变化具有非常重要的作用。在盐胁迫下,ca吸收的增量同ABA的升高量相关,这对维持细胞隔膜的完整性非常有利。细胞隔膜完整性能使植物在外界高盐浓度下长期的控制吸收和传输功能近几年从分子水平对ABA参与的各种逆境反应进行了大量探讨,发现ABA可通过调节植物抗盐基因的表达来减轻盐胁迫对植物正常生理活动的破坏。Roberts等(2000)研究发现ABA能调节细胞内离子平衡。随ABA含量的升高,拟南芥和玉米根系中K+离子通道活性增强,K+/Na+比值升高。利用ABA合成缺陷植物突变体和ABA合成抑制因子证明植物对逆境的适应可通过依赖ABA和不依赖ABA2种主要途径来实现,其中依赖ABA途径又可分为2种,即不依赖新蛋白质合成和依赖新蛋白质合成。在不依赖新蛋白质合成的途径中,ABA对基因的调控主要在转录水平上实现,这些基因的启动子区域都具有ABA的反应因子(ABRE),在ABRE和相应的转录因子共同作用下引起抗逆基因的表达。如:拟南芥中的脱水诱导基因rd29B具有2个ABRE,2种转录因子(AREB1和AREB2),在ABA调控下,通过磷酸化作用实现基因rd29B的表达。在依赖新蛋白质合成的途径中,基因不含反应因子ABRE和其相应的转录因子,因此要先合成和激活这些转录因子,才能实现ABA对基因表达的调控。ABA生物合成途径中几个关键酶对逆境的响应也是ABA调节植物适应逆境的重要影响因素。如:玉米黄素环氧化酶(ZEP)在拟南芥和烟草中分别由基因ABA1和ABA2编码,其作用是促进玉米黄质和花药黄质向紫黄质转化(Tayloreta1,2000);盐胁迫条件下,不论是盐生植物还是非盐生植物,细胞质中高浓度的Na+对胞内的生理活动都造成离子毒害。植物细胞通过拒盐作用或对毒害离子进行区域化,并维持适当K+和Ca2+浓度来保证细胞正常的生理活动,这是植物适应盐胁迫的重要机制之一。离子平衡、区域化和拒盐作用是质膜和液泡膜上无数功能各异的离子通道蛋白、离子转运蛋白和ATPase活性带来的膜电位梯度的结果。离子平衡、离子区域化及拒盐作用盐分干扰了植物体内的离子动态平衡。防止或减轻盐胁迫对植物的伤害,主要涉及如何限制盐分进入植物体内、如何有效地将已进人体内的盐分分隔到代谢不活跃部位以及排除到植物体外。植物存在高效的离子运输和选择性吸收机制,植物通过对离子的选择性吸收、外排和离子区域化来维持细胞内生理代谢所要求的动态平衡,使植物不同程度的表现出它们的耐盐性。盐胁迫下植物对离子选择性吸收其简略过程为:Na+通过Na+一K+共转运蛋白等通道大量“涌入”胞质,H+一ATPase,Na+/H+反向转运蛋白被激活,协调工作以驱动Na+外排运入液泡,最终形成胞外、胞质、液泡三者间的离子平衡。Na+是造成植物盐害及产生盐溃化生境的重要离子。K+是植物生长发育所必需的大量元素和重要的渗透调节组分。在正常生理条件下,植物胞质K+浓度相对较高(100~150mmol·L-1)而Na+相对较低(1~100mmol·L-1),由于2种离子半径和水合能相似,Na+对K+吸收呈现出明显的竞争抑制作用,因此,盐碱化土壤上作物往往受到Na+毒害和K+亏缺的双重伤害,对它们的选择程度的高低就成为影响植物抗盐能力的一个重要因素。植物细胞质中K+/Na+最小值在1左右,而盐胁迫中K+/Na+要远低于细胞内数值,因此,保持植物胞质K+浓度,使其高于一特定值,对于植物的生长及耐盐性都是非常必要的。在盐渍化土壤中,许多细胞质酶活性对Na+非常敏感,过高的Na+会对植物造成伤害。研究表明,植物的K+、Na+的选择性与抗盐性之间存在一定关系,如具有较高K+/Na+选择性的普通小麦的抗盐性高于K+/Na+选择性较低的硬粒小麦。所以,在渗透胁迫下提高编码高亲和性K+运输系统和K+通道基因的表达量,增加细胞内K+的含量,把过多的盐分排出细胞外,将会提高植物的耐盐能力。盐胁迫导致Na+大量涌入胞内,破坏了原有的跨膜电化学梯度,而K+等营养物质向胞质中被动运输和Na+向液泡内转运“仓储”都必须依赖H+跨膜电化学梯度提供动力,因此重建跨膜电化学势梯度是细胞存活的必要条件。细胞膜H+一AT—Pase与液泡膜上H+一ATPase(液泡型三磷酸酶)和H+一ppase(液泡型焦磷酸酶)主要负责建立和维持胞质(一120~200mV)和液泡(+50mV)的跨膜电化学势梯度,从而驱动各种溶质的次级转运。跨膜电化学梯度的重建植物外排Na+和液泡区隔化Na+来减少Na+的毒害是通过Na+/H+逆向转运蛋白来完成。Na+泵入液泡一方面有利渗透调节,另一方面,Na+的区隔化可在不改变细胞Na+含量的情况下降低Na+的积累,从而增加耐盐性。Na+/H+逆向转运蛋白依靠H+一ATP或H+一ppase产生的质子驱动力运输Na+。Na+/H+逆向转运蛋白催化Na+/H+跨膜运输,调节细胞内pH、细胞体积以及Na+浓度,对植物耐盐性起重要作用。Na+/H+逆向转运蛋白Otoch等发现在盐胁迫下,豇豆胚轴中液泡膜的V-ATPase和V-PPase有协同作用。盐胁迫诱导了豇豆胚轴中的V-ATPase,使之活性增加以产生适应性机能来对抗盐胁迫。VPPase对V—ATPase活性的增加起催化作用,并不产生盐适应性机能u。盐生植物碱蓬也是通过V-ATPase活性的有规则增强促使离子吸收到液泡内来产生盐适应性。在盐胁迫下,Na+/H+逆向转运蛋白活性增加,增强了转运Na+能力,在质子泵提供能量下,该蛋白将Na+要么区隔化进入液泡中,要么排到植物体外,从而降低细胞质中Na+的浓度,使过多的Na+离开代谢位点,减轻其对酶和膜系统的伤害,特别是Na+的区隔化还可降低细胞水势,抵抗盐分造成的渗透胁迫。从盐生植物滨藜也分离出来了相似的Na+/H+逆向转运蛋白基因,并被命名为AgNHX1。AgNHX1基因氨基酸序列表明该基因与早期从淡土植物拟南芥和水稻分离出的NHX1基因有超过75%的相同性。在盐胁迫下,从mRNA和蛋白质水平上都发现了AgNHX1基因的诱导作用。盐分靠蒸腾拉力由质外体向上运输,经内皮层时原生质膜、细胞的液泡膜以及木质部薄壁组织细胞的原生质膜对离子进行选择性吸收,以及根部的双层或三层皮层结构拒绝过量吸收有害离子的特性被称为拒盐。拒盐作用植物的拒盐机制方式:(1)作物不将Na+吸入根细胞内,即使进入细胞又通过Na+/H+逆向转运蛋白排出;(2)作物把吸收的Na+贮存于根、茎基部、节、叶鞘等薄壁细胞发达器官组织中