椭圆的简单几何性质教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

课题:椭圆的简单几何性质设计意图:本节内容是椭圆的简单几何性质,是在学习了椭圆的定义和标准方程之后展开的,它是继续学习双曲线、抛物线的几何性质的基础。因此本节内容起到一个巩固旧知,熟练方法,拓展新知的承上启下的作用,是发展学生自主学习能力,培养创新能力的好素材。本教案的设计遵循启发式的教学原则,以培养学生的数形结合的思想方法,培养学生观察、实验、探究、验证与交流等数学活动能力。教学目标:了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义..培养学生的数形结合的思想方法。教学重点:椭圆的简单几何性质的应用。教学难点:椭圆的简单几何性质的应用。二过程与方法目标(1)复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过P48的思考问题,探究椭圆的扁平程度量椭圆的离心率.〖板书〗椭圆的简单几何性质.(2)新课讲授过程(i)通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质.提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii)椭圆的简单几何性质①范围:由椭圆的标准方程可得,222210yxba,进一步得:axa,同理可得:byb,即椭圆位于直线xa和yb所围成的矩形框图里;②对称性:由以x代x,以y代y和x代x,且以y代y这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以x轴和y轴为对称轴,原点为对称中心;③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;④离心率:椭圆的焦距与长轴长的比ace叫做椭圆的离心率(10e),椭圆图形越扁时当01a,,b,ce;椭圆越接近于圆时当a,b,ce00.(iii)例题讲解与引申、扩展例1求椭圆221625400xy的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出,,abc.引导学生用椭圆的长轴、短轴、离心率、焦点和顶点的定义即可求相关量.扩展:已知椭圆22550mxymm的离心率为105e,求m的值.解法剖析:依题意,0,5mm,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x轴上,即05m时,有5,,5abmcm,∴5255m,得3m;②当焦点在y轴上,即5m时,有,5,5ambcm,∴5102553mmm.例2如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口BAC是椭圆的一部分,灯丝位于椭圆的一个焦点1F上,片门位于另一个焦点2F上,由椭圆一个焦点1F发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F.已知12BCFF,12.8FBcm,124.5FFcm.建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为22221xyab,算出,,abc的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于,,abc的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心2F为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径6371Rkm.建立适当的直角坐标系,求出椭圆的轨迹方程.例3如图,设,Mxy与定点4,0F的距离和它到直线l:254x的距离的比是常数45,求点M的轨迹方程.分析:若设点,Mxy,则224MFxy,到直线l:254x的距离254dx,则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点,Mxy与定点,0Fc的距离和它到定直线l:2axc的距离比是常数cea0ac,则点M的轨迹方程是椭圆.其中定点,0Fc是焦点,定直线l:2axc相应于F的准线;由椭圆的对称性,另一焦点,0Fc,相应于F的准线l:2axc.(3)小结1.知识总结:椭圆的几何性质2.思想方法总结:教师根据学生的总结做适当补充、归纳、点评。

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功