椭圆方程式知识点总结1.椭圆方程的第一定义:⑴①椭圆的标准方程:i.中心在原点,焦点在x轴上:.ii.中心在原点,焦点在轴上:.②一般方程:.③椭圆的标准参数方程:的参数方程为(一象限应是属于).⑵①顶点:或.②轴:对称轴:x轴,轴;长轴长,短轴长.③焦点:或.④焦距:.⑤准线:或.⑥离心率:.⑦焦点半径:i.设为椭圆上的一点,为左、右焦点,则由椭圆方程的第二定义可以推出.ii.设为椭圆上的一点,为上、下焦点,则由椭圆方程的第二定义可以推出.由椭圆第二定义可知:归结起来为“左加右减”.注意:椭圆参数方程的推导:得方程的轨迹为椭圆.⑧通径:垂直于x轴且过焦点的弦叫做通经.坐标:和⑶共离心率的椭圆系的方程:椭圆的离心率是,方程是大于0的参数,的离心率也是我们称此方程为共离心率的椭圆系方程.⑸若P是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得).若是双曲线,则面积为.椭圆的简单几何性质常见考法在段考中,多以选择题、填空题和解答题的形式考查椭圆的简单几何性质。选择题和填空题一般属于容易题,解答题一般属于难题。在高考中,一般以解答题的形式融合其它圆锥曲线联合考查椭圆的几何性质,难度较大。误区提醒求椭圆的方程,用待定系数法,先定位,后定量。如果不能确定,要分类讨论。【典型例题】