概率论与数理统计(刘建亚)习题解答第1章

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1概率论与数理统计(刘建亚)习题解答——第一章1-1解:(1)CAB;(2)ABC;(3)CBA;(4)CABCBABCA;(5)CBA;(6)CBACBACBACBA。1-2解:(1)AB;(2)AB;(3)ABC;(4)()ABC。1-3解:1+1=2点,…,6+6=12点,共11种;样本空间的样本点数:n=6×6=12,和为2,1,1A,1An,361)(nnAPA,……和为6,1,5;2,4;3,3;4,2;5,1A,5An,365)(nnAPA,和为(2+12)/2=7,1,6;2,5;3,4;4,3;5,2;6,1A,6An,61366)(nnAPA,和为8,2,6;3,5;4,4;5,3;6,2A,5An,365)(nnAPA,……和为12,6,6A,1An,361)(nnAPA,∴出现7点的概率最大。1-4解:只有n=133种取法,设事件A为取到3张不同的牌,则313AnA,2(1)1691321311121313)(33313AnnAPA;(2)16937)(1)(APAP。1-5解:(1)30.003.008.010.045.0)()()()()(ABCPACPABPAPCBAP(2)07.003.010.0)()()(ABCPABPCABP(3)∵CBACBACBA,,为互不相容事件,参照(1)有73.009.0)05.008.010.0(230.035.045.0)(3)]()()([2)()()()()()()()()()()()()()()()()()()(ABCPACPBCPABPCPBPAPABCPBCPACPCPABCPBCPABPBPABCPACPABPAPCBAPCBAPCBAPCBACBACBAP(4)∵CBABCACAB,,为互不相容事件,参照(2)有14.003.0305.008.010.0)(3)()()()()()()(ABCPBCPACPABPBCAPCBAPCABPBCACBACABP(5)90.003.0305.008.010.030.035.045.0)(3)()()()()()()(ABCPBCPACPABPCPBPAPCBAP(6)10.090.01)(1)(CBAPCBAP。1-6解:设321,,AAA为(1)、(2)、(3)的事件,由题意知(1)121)(310251CCAP;(2)201)(310242CCAP;(3)61)(31015143CCCAP31-7解:5卷书任意排列的方法有n=5!种,设事件5,4,3,2,1iiAi,卷书放在两边第。(1)!4!4111AnA,卷书放在两边第,52!5!42)(1AP;(2)101!5!3!2)(51AAP;(3)107101522)()()()(515151AAPAPAPAAP;(4)1091011)(1)()(515151AAPAAPAAP。1-8解:这是一个几何概率问题,设折断点为yx,,(yx)。由题意及三角形的特点知:(1)折断点在棍内:Lyx0;(2)折成三段后,每段小于棍的一半:LyLLxyLx21,21,21;(3)任两段之和大于棍的一半:LxyLLxLLy21,21,21;整理条件:LxyLxLyLyx2121210所包含的区域如图,故412181)(22LLmmAPA。1-9解:设{},{},{}AAABAaCaa。4200460012501(1)(),(),()200600501720060050172006005017415(2)()()()()0171717PAPBPCPACPAPCPAC1-10解:设A={活到20岁};B={活到25岁},4.0)(,8.0)(BPAP显然BBAABBA,,由题意得5.0)()()()()|(APBPAPABPABP1-11解:设iA={第i次取到次品},3,2,1i。由题意得8256.09810998910090)|()|()()(123121321AAAPAAPAPAAAP1-12解:设iA={第i人译出密码},3,2,1i。由题意得6.04332541)()()(1)(1)(321321321APAPAPAAAPAAAP1-13解:设iA={第i道工序的合格品}(4,3,2,1i),且4321,,,AAAA相互独立。由题意得984.0)008.01)(001.01)(002.01)(005.01()](1)][(1)][(1)][(1[)()()()()(432143214321APAPAPAPAPAPAPAPAAAAP1-14解:这是贝努里概型:),,1,0(,)1()(nkppCkPknkknn,由题意9905.0)1(95.0)1(1)0(1)1(nppkPkPnnnn51-15解:设A1、A2、A3分别为从甲袋取到1个红、白、黑球,设B1、B2、B3分别为从乙袋取到1个红、白、黑球,由题意知112233112233112233()()()()()()()()()()763101590.3312252525252525PABABABPABPABPABPAPBPAPBPAPB1-16解:设321,,AAA分别表示产品由甲、乙、丙车间生产,B表示为正品。321,,AAA构成一个完备事件组,且有2.0)(,3.0)(,5.0)(321APAPAP;20/19)/(,15/14)/(,10/9)/(321ABPABPABP。(1)由全概率公式92.020192.015143.01095.0)/()()(iiABPAPBP(2)由贝叶斯公式924592.09.05.0)()/()()/(111BPABPAPBAP1-17解:设Ai={第一次取到i个新球},(i=0,1,2,3);B={第二次取到3个新球}。则A0,A1,A2,A3构成完备事件组,其中3122133939390123333312121212(),(),(),()CCCCCCPAPAPAPACCCC由全概率公式3312321333339938937963333333301212121212121212()()(/)184275610835842070560.146220220220220220220220220220220kkkCCCCCCCCCCPBPAPBACCCCCCCC由贝叶斯公式63331680()(/)220220(/)0.2387056()220220PAPBAPABPB1-18解:设21,AA分别表示甲、乙击中目标,由题意知21,AA相互独立。(1)72.09.08.0)()()(2121APAPAAP(2)26.02.09.01.08.0)()()()()()()(212121212121APAPAPAPAAPAAPAAAAP(3)98.01.02.01)()(1)(1)(212121APAPAAPAAP(4)02.01.02.0)()()(2121APAPAAP1-19解:与1-10题类似。()()0.85(|)0.9239()()0.92PABPBPBAPAPA1-20解法1:设Ai={3000小时未坏},(i=1,2,3),A1,A2,A3相互独立,所以31231232123123123123123123123123(1)()()()()0.80.512(2)()3()()()30.80.20.384(3)()0.5120.3840.896PAAAPAPAPAPAAAAAAAAAPAPAPAPAAAAAAAAAAAA解法2:这是n重贝努里概型,knkknnppCkP)1()(,n=3,p=0.83333322323(1)(3)(1)(0.8)(10.8)0.512(2)(2)(1)(0.8)(10.8)0.384(3)(2)(2)(3)0.5120.3840.896kknknnkknknnnnnPkCppCPkCppCPkPkPk1-21解:这是贝努里概型,knkknnppCkP)1()(,n=12,p=7事件设A={≥9台同时使用}4925.0)()(129knkPAP71-22解:(1)为贝努里概型,设Ai={第i个人的血型为O型},(i=1,2,3,4,5),则恰有2人血型为O型的概率为22522525(2)(1)(1)100.46(10.46)0.3333kknknnPkCppCpp(2)设Bi={第i个人的血型为A型},(i=1,2,3,4,5),因321234512345()()()()()()0.460.40PAAABBPAPAPAPBPB而5人中有3人为O型、2人为A型的排列有3510C种,故所求概率为33250.460.400.1557PC(3)设Ci={第i个人的血型为AB型},(i=1,2,3,4,5),则没有AB型的概率为5123451234512345()()()()()()()(10.03)0.8587PCCCCCPCCCCCPCPCPCPCPC1-23解:设Ai={第i次摸到黑球},(i=1,2,…,a+b),由题意知k=111(),()abPAPAababk=221121212121121()(())()()()(/)()(/)111PAPAAAPAAPAAPAPAAPAPAAaabaaabababababk=332323123123123123121312121312121312121312()()()()()()()()(/)(/)()(/)(/)()(/)(/)()(/)(/)121121PAPAAPAAPAAAPAAAPAAAPAAAPAPAAPAAAPAPAAPAAAPAPAAPAAAPAPAAPAAAaaabaaabababababab2111212ababbaaababababababab依此类推可得(),(1)kaPAkabab81-24解:设Ai={第i次按对号码},(i=1,2,3),所求概率为112123112123112123()()()()()()()()()()191981310109109810PAAAAAAPAPAAPAAAPAPAPAPAPAPA若已知最后一位数为偶数,则其概率为112123112123112123()()()()()()()()()()14143135545435PAAAAAAPAPAAPAAAPAPAPAPAPAPA1-25解:设A={从甲袋中取一白球},B={从乙袋中取一白球},由已知得(),()NMPAPAMNMN由全概率公式得()()()()(/)()(/)1(1)11()(1)PBPABPABPAPBAPAPBANnMnMnNnMNmnMNmnMNmn1-26证明:∵)|()|()()|()()|()()|()

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功