第1页共2页广东海洋大学2009—2010学年第二学期《概率论与数理统计》课程试题课程号:1920004√考试√A卷√闭卷□考查□B卷□开卷一.填空题(每题3分,共45分)1.从1到2000中任取1个数。则取到的数能被6整除但不能被8整除的概率为1/82.在区间(8,9)上任取两个数,则“取到的两数之差的绝对值小于0.5”的概率为3/43.将一枚骰子独立地抛掷3次,则“3次中至少有2次出现点数大于2”的概率为333223)32(31)32(CC(只列式,不计算)4.设甲袋中有5个红球和2个白球,乙袋中有4个红球和3个白球,从甲袋中任取一个球(不看颜色)放到乙袋中后,再从乙袋中任取一个球,则最后取得红球的概率为33/565.小李忘了朋友家的电话号码的最后一位数,于是他只能随机拨号,则他第五次才能拨对电话号码的概率为10/16.若X~,2则)}({XDXP22e7.若X的密度函数为其它01043xxxf,则5.0F=1/168.若X的分布函数为111000xxxxxF,则)13(XE1/29.设随机变量)4.0,3(~bX,且随机变量2)3(XXY,则}{YXP0.64810.已知),(YX的联合分布律为:012011/61/91/61/41/181/4则}1|2{XYP9/2011.已知随机变量,XY都服从[0,4]上的均匀分布,则(32)EXY____2____班级:姓名:学号:试题共6页加白纸3张密封线GDOU-B-11-302YX第2页共2页二.设随机变量),(YX的概率密度为其它,,2010,10),(yxycxyxf求(1)未知常数c;(4分)(2)}2/1{YXP;(4分)(3)边缘密度函数)()(yfxfYX及;(8分)(4)判断X与Y是否独立?并说明理由(4分)独立。其它解),()(),(410102600)(10103600)(3320/3192/1320/162/12/112/1266/),(11010,10),(10210222/1022/1010210,,2yfxfyxfyyyydxxyyfxxxydyxxxfYXPdyyxYXPYXPYXPccdyycxdxdyxfyxycxyxfYXYXx三.据某医院统计,凡心脏手术后能完全复原的概率是0.9,那么再对100名病人实施手术后,有84至95名病人能完全复原的概率是多少?(10分)(9525.0)67.1(,9972.0)2()9497.01)2()67.1(}67.13902{}9584{)1,0(390,9)(,90)(,09.01.09.0)(,9.0)(9.0)1(01100110011001100110011001iiiiiiiiiiiiiiiiXPXPNXXDXEXXDXEXPiX近似服从由中心极限定理:表示总的复原的人数。,则:否则人复原第令解