商业银行体系与货币供给

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二节商业银行体系与货币供给——货币乘数理论一、认识中央银行发行的现钞二、对活期存款的分析—简单乘数三、与经济现实较为贴近的货币乘数四、对货币乘数中变量相关方向的简单分析一、认识中央银行发行的现钞1、中央银行向市场投放现钞的渠道:对金融机构贷款,金融机构获得了现钞的使用权;对政府贷款(通常是财政当局),政府获得了现钞的使用权;收购外汇和金银,出口商、金银持有者得到了现钞所有权。二、对活期存款的分析—简单乘数2、关于货币乘数的基本概念:原始存款与派生存款现金货币与存款货币法定准备金率与超额准备金率法定存款准备金与超额存款准备金通货与基础货币二、对活期存款的分析—简单乘数3、前提假设法定准备金率为20%银行体系有两家以上银行构成银行存款都是活期存款公众将货币收入全部存入银行超额存款准备金为0二、对活期存款的分析—简单乘数4、银行帐户模拟表1:银行A的帐户万元资产负债法定准备金20存款100贷款80设,公众将收入100万元都存入银行A,银行A必须缴存法定准备金20万,其余全部放款。银行A的账户为:二、对活期存款的分析—简单乘数4、银行帐户模拟表2:银行B的帐户万元资产负债法定准备金16存款80贷款64设银行A将80万元贷给某厂商,该厂商将其存入自己的开户行B,银行B必须缴存法定准备金16万,其余全部放款。银行B的账户为:二、对活期存款的分析—简单乘数4、银行帐户模拟表3:银行C的帐户万元资产负债法定准备金12.8存款64贷款51.2设银行B将64万元贷给某厂商,该厂商将其存入自己的开户行C,银行C必须缴存法定准备金12.8万,其余全部放款。银行C的账户为:二、对活期存款的分析—简单乘数银行C将51.2万元贷放出去,情形同前……银行名称新增存款法定准备金新增贷款A100002000080000B800001600064000C640001280051200D512001024040960E40960819232768F327686553.626214.4G26214.45242.920971.5K20971.54194.316777.2…………合计500000100000400000如下表所示:二、对活期存款的分析—简单乘数现在,我们计算一下存款总额:用无穷递减等比数列求和:100000800006400051200...S=++++111000000100000550000010.2SAq=???-二、对活期存款的分析—简单乘数5、简单乘数:式中:K表示简单乘数r表示法定准备金率1Kr=三、与经济现实较为接近的货币乘数1、前提假设:法定准备金率为20%两家以上商业银行全部存款分为活期存款和定期存款公众手中持有的现金,即流通中的现金为C商业银行的超额准备金为Rov三、与经济现实较为接近的货币乘数2、乘数推导:M1:狭义货币M2:广义货币B:基础货币=法定准备金+超额准备金+流通中的现钞R:总准备金=法定准备金+超额准备金Rl:法定准备金Rov:超额准备金R:总准备率=r:法定准备金率=首先,规定所用变量的符号:+法定准备金超额准备金存款总额存款总额法定准备金三、与经济现实较为接近的货币乘数2、乘数推导:rov:超额准备率=C:流通中的现钞D:商业银行的存款总和Dd:商业银行的活期存款n:活期存款在总存款中的比例q:流通中现金对存款总额的比例,即现金漏损率存款总额超额准备金dDD=CD=三、与经济现实较为接近的货币乘数根据货币定义,和可以写成::基础货币的定义为:根据总准备金的规定,有:1dMCD=+1M2M2MCD=+RrD=BCR=+三、与经济现实较为接近的货币乘数根据我们的规定,与、与的关系可写成得:整理,得:dDDDCdDnD=CqD=BqDrD=+()Dqr=+.1rovDBrrq=++三、与经济现实较为接近的货币乘数对基础货币求一阶偏导,得式中,为存款量的乘数,即每一元基础货币的增减所引起的存款的增减倍数。如将此乘数用表示,则有:B().1!!!lovDnDBrrqrnrD¢==D++-.1dlovKrrq=++dKD¢三、与经济现实较为接近的货币乘数用同样的方法可以推出,广义货币乘数为:2.1lovqKrrq+=++由以上两个乘数可以得出结论,货币量是由中央银行、商业银行部门和非银行部门共同决定的。但是,一般情况下中央银行和商业银行占主要地位。四、对货币乘数中变量相关方向的简单分析从和两个货币乘数来看:对于来说,活期存款占存款总额的比例与货币乘数同向变动,法定准备金率和超额准备金率与货币乘数均为反向变动关系,现金漏损率与货币乘数的关系,较难直接得到观察结论,因为它同时出现在分子和分母中。我们只能通过数学证明来判断。1K2K1Knq四、对货币乘数中变量相关方向的简单分析以为例,令>,则只需证明>或<即可。2Kq2K¢q¢2K2K¢2K21qKrq+=+∵∵2211qqKKrqrq¢++¢-=-¢++∴将等式右端通分、整理,得:11()(1)()()qqqqrrqrqrqrqⅱ++---=ⅱ++++四、对货币乘数中变量相关方向的简单分析qqq¢即<成立。至此,可以得出结论:现金漏损率与货币乘数反向变动。r(1)r-因为、都是小于1的正数,所以,分母大于0、大于0。根据题设所以<0。因此有:()qq¢-()(1)()()qqrrqrq¢--¢++<02K¢2K

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功