弹塑性力学简答题2002年1什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。2从数学和物理的不同角度,阐述相容方程的意义。从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。3两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。4虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题?平衡微分方程和静力边界条件。不涉及物理方程。适用于塑性力学问题。5应力状态是否可以位于加载面外?为什么?不可以。保证位移单值连续。连续体的形变分量x、y、xy不是互相独立的,而是相关,否则导致位移不单值,不连续。6什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形?加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。中性变载:应力增量沿着加载面,即与加载面相切。应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。7用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程?协调方程和边界条件。8薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小?平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z方向的挤压应力最小,是更次要的应力。9什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少?在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。剪切应力是最大剪应力。10什么是随动强化?试用单轴加载的情况加以解释?20041对于各项同性线弹性材料,应用广义胡克定律说明应力与应变主轴重合?,,,222xXxyxyyyyzyzzzzxzxGGGGGG,当某个面上的剪切应力为零时,剪应变也为零,这说明应力的主方向与应变的主方向重合。2应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。3虚位移原理等价于哪两组方程?这说明了什么?平衡微分方程和力边界条件,说明了虚位移原理是以能量形式表示的静力平衡。4最小势能原理的适用范围是什么?为什么?仅对弹性保守系统有效,因为是在条件弹性保守系统的假定下进行的。5使用应力作为基本未知数求解弹性力学问题,应力应满足哪些方程?本构方程和协调方程。6两个弹性力学问题,一个为平面应力,一个为平面应变,所有其它条件都相同,试问两者的应力分布是否相同?不相同。前面一个是(,)(,)0xxyyzxyxy,后面是1()2zxy0。7弹性应变能可以分解为哪两种应变能?体积改变能和形状改变能。8在薄板弯曲中,哪些应力和应变分量较大?哪些应力分量较小?,(,)(,)xyxyyzzxz。9对于各向同性弹性体,弹性应变能是否可以一定可以表示为应力不变量(或应变不变量)的函数?为什么?可以。弹性应变能是客观存在的,它与坐标系的选择无关。10对照应力张量ij与偏应力张量ijS,试问:两者之间的关系?两者主方向之间的关系?相同。110220330SSS。11给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。12中性变载是否会产生塑性变形?是否会产生弹性变形?分别是为什么?中性变载是应力增量沿着加载面,即与加载面相切。因应力在同一个面上变化,内变量将保持不变,不会产生新的塑性变形(连续性条件),但因为应力改变,会产生塑性应变。13使用单轴拉伸和压缩的实验解释随动强化的意义。14使用Mises屈服条件和Drucker-Prager屈服条件,说明金属材料和岩土材料屈服条件最本质的区别是什么?Mises屈服条件是22/30SfJ,Drucker-Prager屈服条件是120aIJk,区别是前一个只考虑偏应力,而后面一个在考虑偏应力的基础上还要考虑静水压力。15对于非稳定材料,正交流动法则是否成立?为什么?不成立。有应变软化存在,所以不成立。20061为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。2应变协调方程的物理意义是什么?对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。3解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。连续体的形变分量x、y、xy不是互相独立的,而是相关,否则导致位移不单值,不连续。4举例说明屈服条件为各向同性的物理含义?5比较两种塑性本构理论的特点?增量理论和全量理论。增量理论将整个加载历史看成是一系列的微小增量加载过程所组成,研究每个微小增量加载过程中应变增量与应力增量之间的关系,再沿加载路径依次积分应变增量得最终的应变。全量理论不去考虑应力路径的影响,直接建立应变全量与应力全量直接的关系。6固体力学解答必须满足的三个条件是什么?可否用其他条件代替?可以。能量原理处于整个系统。20081已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?一定,从几何角度看,微单元体之间就会出现裂缝或者相互嵌入,即产生不连续现象、而实际物体在变形后应保持连续,因此,6个应变分量不能任意给定,必须满足一定的协调关系,否则,就会导致位移不单值,不连续现象产生2对于各向同性超弹性体,其应变能是应力的三个不变量的函数,据此说明在线性弹性情况下独立的弹性常数只有两个。3与Ritz法相比较,有限元方法的优点主要是哪些?在使用Ritz法进行近似求解时,需要在整个物体构造位移试验函数,对于复杂的几何开头,这往往比较困难、有限元的基本思想则是:把整个求解区域分成许多个有限小区域,这些小区域称之为单元。单元与单元之间保持位移连续;然后,在每一个单元上求热能,将所有单元上的势能加起来得弹性体的总势能,最后应用最小势能原理求解单元节点位移。4最小势能原理能否适用于分析塑性力学问题?为什么?5物体稳定的充分条件如何用应力增量和应变增量表示?并说明对于线弹性该条件是满足的。6用简单的位错模型说明为什么金属材料的屈服条件可以假定与静水压力无关?金属材料产生的塑性变形的原因可能是位错在晶体内运动,引起晶体内原子层沿滑动面滑动,即可解释为在剪切作用下的位错移动,即剪切滑移,与静水压力无关。7理想塑性材料本构关系的塑性因子是通过什么来确定的?实际问题中,如果微单元体周围物体还牌弹性阶段,由于要满足变形协调条件,微单元体的塑性变形必然受到周围物体的限制,而不可能任意发展,这时塑性因子的值是确定的,不过它不是通过微单元体本身的本构关系确定的,面是由问题的整体条件来确定。理想弹塑性问题,就在平稳、几何和本构方程的基础上,结合屈服条件一起求解8以Mises等向硬化模型为例,试说明如何根据实验确定加载面的演化方程?9物体在一部分区域产生塑性变形后,便卸去所有荷载,假象将卸载后的物体分割成许许多多的微小单元体,再将它们拼在一起,会产生何现象?为什么?弹性本构关系和塑性本构关系的各自主要特点是什么?对于弹性体,一点的应力应取决于该是点的应变状态,即应力是应变函数:,进入塑性状态后,应变不仅取决于应力状态,而且取决于应力状态,而且还取决于应力历史虚功原理是否适用于塑性力学问题?为什么?可以,因为虚功原理没有涉及物体的本构方程,没有规定应力应变之间的具体关系塑性内变量是否可以减小?为什么?内变量,微观上:宏观上:通过塑性应变和其他宏观变量构造而成Tresca屈服条件和Mises屈服条件是否适用于岩土材料?为什么?不能,因为Tresca各MISES屈服条件假定屈服条件只取决于偏应力,而与静水压力无关,与此同时假定塑性应变增量与屈服条件只取决于偏应力,而与静水压力无关,与此同时假定塑性应变增量与屈服面下次,不存在塑性体积变形,而且拉伸和压缩的塑性几乎一致,这些假定对于金属材料基本满足,但对于岩石砼一类脆性材料不适用。Pie平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。固体力学解答必须满足的三个条件是什么?可否忽略其中一个?