水利立交地下涵洞输水输沙特性研究

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

水利立交地下涵洞输水输沙特性研究徐金环(河海大学航运及海洋工程系)摘要依据物理模型试验,探讨了立交地下涵洞泄流和输沙能力及防止泥沙淤积措施,并提出了判别涵洞内不淤流速的计算公式,其结果与试验成果较为一致。关键词立交地涵不淤流速防淤措施1前言废黄河是一条多泥沙河流,在江苏省北部自西向东流入黄海。目前,正在建设的通榆河,南起南通、北至赣榆,纵贯江苏东部沿海地区,是实现送水北上,解决苏北工农业用水,发展水运事业,振兴苏北经济的大型水利水运骨干运河。因而,在通榆河与废黄河相交处,将建设水利立交工程,分别满足废黄河输水排沙和通榆河引水通航的需要。本文以设计三种水利立交工程方案的模型试验为基础,论述水利立交工程中地下涵洞输送水沙能力及工程防淤措施,并给出了判别涵洞内不淤流速的计算公式,成功地解决了水利立交工程中泥沙淤积的关键问题。2立交工程布置型式与输水能力2.1水利立交地下工程布置型式通榆河引水流量100m3/s,设计河道底宽50m,而从通榆河底穿越的废黄河,设计排洪流量500m3/s,要求控制立交工程上下游水位差0.5m。为此,江苏省水利勘测设计院先后提出了三种立交工程设计方案,进行优化筛选。图1为倒虹吸型立交地涵设计方案,纵向水平涵洞洞身长50m,两端按1∶6的斜坡向外延伸,其进出口闸室底板与渠道平底连接,横向不改变通榆河过水断面。图1倒虹吸型长涵洞剖面(单位:cm)Longculvertprofileofinvertedsiphon图2上槽下洞型短涵洞剖面(单位:cm)Shortculvertsectionwithup-flumeanddown-hole图2是上槽下洞型立交地涵设计方案,上层为渡槽型式,满足通榆河引水通航,下层设地下涵洞,输送废黄河来水来沙。涵洞上下游分别设计1∶6和1∶9的斜坡过渡段,与引水河道相连。第三种竖井型立交地下涵洞设计方案,其进口段竖井型式设置,出口段则以逆向斜坡与渠道相连。涵洞洞身段分上下两层输水,布置形式见图3。三种设计方案的主要特征见表1。图3竖井型双层涵洞剖面(单位:cm)Doubleculvertsectionofshaft表1废黄河水利立交地下涵洞主要尺度及特征MainsizesandcharactersofundergroundculvertscrossingundertheabandonedYellowRiver特征值总长总宽总闸总过水单孔尺度(m)主要特征型式(m)(m)孔数面积(m2)高宽倒虹吸型168.57615187.83.24.0优点:不影响通榆河过水断面缺点:泄流能力较小上槽下洞型80.455.512162.243.454.0优点:泄流能力较大缺点:进口斜坡段泥沙易淤积竖井双层型71.841.1上层9下层9209.54.61.83.73.7优点:涵洞宽度小,引河工程投资省缺点:闸门多,运行操作不便2.2立交地下涵洞水头损失立交地下涵洞恒淹没水下,泄流状态属有压流。为比较涵洞的泄流能力,三种立交工程布置方案的试验研究均设计成正态模型,几何比尺统一取1∶40。在全部开启闸门敞泄设计洪水时,测得倒虹吸型涵洞沿程水头损失40cm,约占总水头损失的1/2①;上槽下洞型涵洞和竖井型涵洞沿程水头损失较小,分别为22.4cm和16cm,占各自总水头损失的1/3左右,局部水头损失约占2/3②。其中上槽下洞型涵洞水流与涵洞四周边壁不发生分离,若加大进口闸室胸墙圆弧半径,改善进口水流条件,进口段局部水头损失略有减小,但相应增加沿程水头损失,涵洞水流内部发生自动调整,从而维持总水头损失基本不变,胸墙两种圆弧半径布置方案沿程水头变化见表2,测点位置见图4,可见上槽下洞型立交地涵泄流已达较佳状态。①南京水利科学研究院。废黄河地涵工程泥沙模型试验报告,1990年。②河海大学航运及海洋工程系。废黄河地涵整体模型试验研究(短涵洞方案和竖井方案),1994年。表2上槽下洞型立交地下涵洞沿程水头损失变化(流量500m3/s)Headlossvariationofacrossingundergroundculvertwithup-flumeanddown-hole测点位置H1H4H5H6H8H9H10H13备注沿程水头(m)7.4807.3847.0166.9486.792/6.8406.808胸墙圆弧R=3m7.4727.3767.2007.056/6.8246.8566.808胸墙圆弧R=5m图4上槽下洞型地涵水头测点布置图Surveypointsofwaterpressureforundergroundculvertwithup-flumeanddown-hole竖井型双层立交地下涵洞,原进口段布置方案竖井垂直,宣泄水流时形成2个回流区,减少了有效过水面积,局部水头损失大,泄流能力减小。当加大上下层竖井进口闸室断面圆弧半径,消除闸室内底部回流区,进口段局部水头损失由40cm减小到25.6cm,从而使竖井双层涵洞的总水头损失59.2cm减至44.8cm,显然竖井进口断面形态对泄流影响很大。竖井型地涵进口段修改布置见图5。图5竖井型地涵进口段修改布置(单位:cm)Revisedinletforundergroundculvertofshafttype当改变调度管理方式、降低地涵下游水位运行时,竖井双层涵洞水头损失明显增大,泄流能力减小,倒虹吸型涵洞水头损失变化次之,上槽下洞型地涵在下游水位淹没出流条件下,水头损失变化十分微弱,表明上槽下洞型立交地下涵洞泄流条件优良。2.3单、双层涵洞沿程阻力系数根据上述立交地下涵洞淹没出流的输水特性,由管道宣泄水流总水头损失公式hω=[λ·l/D+Σξ]U2/(2g)式中λ为立交地涵沿程阻力系数;l为立交地涵长度;D为立交地涵当量直径,取D=4R;Σζ为各部位局部阻力系数之和;U为洞内平均流速;g为重力加速度。可得宣泄洪水流量时阻力系数见表3,表明上槽下洞型立交地下涵洞沿程阻力系数和局部阻力系数均较小,竖井型双层涵洞沿程阻力系数较大,约比单层涵洞增大50%。因此,上槽下洞型立交地下涵洞输水性能占优。表3立交地下涵洞水头损失与阻力系数Relationsbetweenheadlossandresistancefactorincrossingundergroundculverts结构型式洞内平均流速(m/s)洞内平均沿程阻力局部阻力流量总值局部沿程流速(m/s)系数λ系数Σζ系数μ倒虹吸型79.039.040.02.660.02421.080.676上槽下洞型67.244.822.43.080.02220.930.848竖井双层型(8组孔)60.241.019.22.680.0301.120.780竖井双层型(9组孔)44.828.816.02.390.0310.990.807注:表中竖井型双层涵洞为进口段断面修改后测量值。3立交地下涵洞输沙与不淤流速3.1地下涵洞模型输沙特性废黄河枯水时雨水少,河道两岸不发生坍塌,高滩地上洪水时落淤的细颗粒泥沙很少被地面径流带入河道,水中挟沙多来自河床冲刷,颗粒较粗而含沙量较小。汛期时水位高,流量大,主流易发生摆动,造成河岸坍塌,再加之雨水多,滩地淤积细颗粒泥沙被冲刷搬移,导致河道来沙增大,而泥沙颗粒相对较细,60年代期间含沙量与流量变化关系见表4。近期废黄河含沙量有所减少,粒径相应趋向均匀变细,悬沙中值粒径0.02mm。在建造水利立交地下涵洞后,如何利用涵洞水流本身水力条件,将众多来沙输送下泄,为此,模型用水力筛选后的胶木粉为试验用沙,并从偏于地涵使用安全着想,按沉降相似设计,由泥沙粒径比尺λd=1.23,选用模型沙中值粒径0.0166mm,进行水力输沙试验。表4废黄河含沙量与流量变化关系RelationbetweensiltcontentanddischargeintheabandonedYellowRiver流量(m3/s)50100200300400500含沙量(kg/m3)0.20.51.52.33.04.0经过施放浑水试验,表明在全部开启闸门下泄中小流量时,三种立交地下涵洞内均有一定程度的泥沙淤积,其中以流量100m3/s、含沙量0.5kg/m3时淤积强度最大,月平均淤积厚度约13cm。小于该流量时,含沙量小,涵洞内泥沙淤积少。反之流量大时,含沙量相应增加,但洞内流速加大,输沙能力亦增大,涵洞内泥沙淤积也减少。在泄流量200m3/s时,洞内月平均淤积厚度减至3cm左右。当下泄流量超过300m3/s时,洞内平均流速约增至1.6m/s,尽管含沙量较大,但涵洞输沙能力更大,泥沙无法落淤,立交地下涵洞内可转变为无泥沙淤积状态。在立交地下涵洞进口段,倒虹吸型和竖井型双层地下涵洞闸室底板与渠道平底方式联接,涵洞口门附近均无泥沙淤积,有利涵洞安全输沙。但上槽下洞型地下涵洞进口段,由于明渠底坡斜向联接,上游过水断面沿程扩大,流速发生减小,水流挟带泥沙不断落淤。宣泄洪水流量500m3/s时,测得15天平均淤厚98.6cm,局部最大淤厚达176cm,进口斜坡段泥沙淤积多,对地涵安全运行威胁大。但下游出口斜坡段,主流紧贴斜坡面,底部流速大(1),输沙能力远大于上游斜坡段,因而下游逆向斜坡联接较上游有利输水输沙。3.2原型沙水力冲刷试验立交地下涵洞内一旦发生泥沙淤积,不但影响安全泄洪,而且将给机械清淤带来很大困难。为解决立交地涵在全开闸门下泄中小流量时的泥沙淤积问题,维持地涵设计泄洪和排沙能力,采集原型沙,进行地涵水力冲刷试验,其原型底沙中值粒径D50=0.0456mm,最大粒径Dmax=0.125mm,小于0.05mm的粉沙和粘土约占沙样比重65%。试验中通过控制进口流量、逐步加大涵洞内流速的方法,不断观察洞内淤积泥沙各种运动状态。当涵洞试验段内流速为0.3m/s时,各种淤积历时的床面泥沙表现处于静止状态,偶尔有个别微小沙粒下移,可认为涵洞水流未达到临界起动流速;当流速增至0.5m/s,对于各种淤积历时的床面泥沙,均可观察到少部分颗粒顺水下移滚动,河床表面呈细沟状轻微剥蚀,但未见泥沙扬动现象,水流流态介于起动流速与扬动流速之间;流速增至0.7m/s时,不论泥沙淤积历时长短,均有床面部分泥沙进入扬动状态,河床出现冲刷,其形式以条状剥蚀为主,冲刷起来的泥沙仅靠近涵洞底部以悬移方式运行,此时冲刷强度较小。只有当流速增至0.9m/s时,各种淤积历时泥沙均才出现大量扬动状态,河床冲刷强烈,床面随之下切,掀起的泥沙充满整个涵洞,呈云雾状随水流向下游悬移。少数因淤积床面被水流冲刷出现的粘性颗粒,被底部紊动水流跃起,也可迅速送出地下涵洞。对于铺厚5cm的原型底沙,尽管淤积历时不同,但各种水力冲刷状态基本相近,仅有冲刷历时存在差异。淤积历时长,淤积泥沙冲刷干净的时间较长,床面冲刷率降低。反之,淤积泥沙则被迅速冲刷完毕,冲刷率增大。按照淤积历时分别为1天、1个月、2个月、4个月和6个月五组试验观察,表明淤积历时在两个月以下时,淤积泥沙冲刷迅速,冲刷率变化较快。超过两个月后,则冲刷率变化相对稳定,具体见图6。另外,原型立交地下涵洞泄流时,由于水深较大,将与室内冲刷试验结果稍有不同,依据原型地涵与试验涵洞内同为天然底沙,淤积泥沙床面冲刷起动和扬动时床面切应力相等原理,换算到原型地下涵洞在各种运动状态下的临界水力条件,均比室内试验成果增大约30%,即立交地下涵洞内流速大于1.2m/s时,可满足淤积泥沙呈大量扬动状态。3.3涵洞内泥沙不淤流速分析图6泥沙冲刷率与淤积时间变化Relationbetweenerosionrateanddepositedtime立交地下涵洞安全输沙时以悬沙形式为主,涵洞内悬沙垂向分布均匀程度将仍服从悬浮指标Z=ω/κU*,认为当Z≥5时,泥沙基本上以推移质运动,反之则开始出现悬移运动,即表示泥沙开始悬浮。当Z<0.25时,水流紊动扩散强烈,悬沙垂向分布趋于均匀,河床呈冲刷不淤积状态,此时临界水力条件下的平均流速,即为涵洞内泥沙不淤流速。由Z=ω/(KU*)0.25(1)得U*=ω/(0.25K)或UFω/(0.25K)·C/(2)在立交地

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功